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Abstract. The use of intelligent systems for stock market predictions
has been widely established. In this paper we introduce a genetic pro-
gramming technique (called Multi-Expression programming) for the pre-
diction of two stock indices. The performance is then compared with an
artificial neural network trained using Levenberg-Marquardt algorithm,
support vector machine, Takagi-Sugeno neuro-fuzzy model, a difference
boosting neural network. We considered Nasdaq-100 index of Nasdaq
Stock MarketSM and the S&P CNX NIFTY stock index as test data.

1 Introduction

Prediction of stocks is generally believed to be a very difficult task. The process
behaves more like a random walk process and time varying [18],[6]. The obvious
complexity of the problem paves way for the importance of intelligent predic-
tion paradigms [20], [7]. During the last decade, stocks and futures traders have
come to rely upon various types of intelligent systems to make trading decisions
[1], [2],[5],[15],[11] . In this paper we perform a comparison of five different in-
telligent paradigms. Two well-known stock indices namely Nasdaq-100 index of
NasdaqSM [9] and the S&P CNX NIFTY stock index [10] are used in experi-
ments. Nasdaq-100 index reflects Nasdaq’s largest companies across major in-
dustry groups, including computer hardware and software, telecommunications,
retail/wholesale trade and biotechnology. The Nasdaq-100 index is a modified
capitalization-weighted index, which is designed to limit domination of the in-
dex by a few large stocks while generally retaining the capitalization ranking
of companies. Similarly, S&P CNX NIFTY is a well-diversified 50 stock index
accounting for 25 sectors of the economy [10]. It is used for a variety of purposes
such as benchmarking fund portfolios, index based derivatives and index funds.



The CNX Indices are computed using market capitalization weighted method,
wherein the level of the Index reflects the total market value of all the stocks in
the index relative to a particular base period.

Our research is to investigate the behavior of MEP technique for modeling
the Nasdaq-100 and NIFTY stock market indices so as to optimize the perfor-
mance indices (different error measures, correlation coefficient and so on). The
results obtained by MEP are compared to the results obtained by other four tech-
niques. The four techniques used in experiments are: an artificial neural network
trained using the Levenberg-Marquardt algorithm, support vector machine [17],
difference boosting neural network [14], a Takagi-Sugeno fuzzy inference system
learned using a neural network algorithm (neuro-fuzzy model) [8].

We analyzed the Nasdaq-100 index value from 11 January 1995 to 11 January
2002 and the NIFTY index from 01 January 1998 to 03 December 2001. For
both the indices, we divided the entire data into almost two equal parts. In
Section 2, we briefly describe the MEP technique used in the experiments. In
section 3 a short description of the others techniques used in this paper namely
artificial neural network (ANN), support vector machines (SVM) [17], Neuro-
Fuzzy System and Difference Boosting Neural Network (DBNN) is presented
followed by experimentation setup and results in Section 4. Some conclusions
are also provided towards the end.

2 Multi Expression Programming

Multi Expression Programming (MEP) technique description and features are
presented in this section.

2.1 Solution Representation

MEP genes are (represented by) substrings of a variable length. The number
of genes per chromosome is constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a function symbol. A gene that
encodes a function includes pointers towards the function arguments. Function
arguments always have indices of lower values than the position of the function
itself in the chromosome.

The proposed representation ensures that no cycle arises while the chro-
mosome is decoded (phenotypically transcripted). According to the proposed
representation scheme, the first symbol of the chromosome must be a terminal
symbol. In this way, only syntactically correct programs (MEP individuals) are
obtained.

An example of chromosome using the sets F= {+, *} and T= {a, b, c, d} is
given below:

1: a
2: b
3: + 1, 2
4: c



5: d

6: + 4, 5
7: * 3, 6
The maximum number of symbols in MEP chromosome is given by the for-

mula:
Number of Symbols = (n+1) * (Number of Genes – 1) + 1,

where n is the number of arguments of the function with the greatest number of
arguments.

The maximum number of effective symbols is achieved when each gene (ex-
cepting the first one) encodes a function symbol with the highest number of
arguments. The minimum number of effective symbols is equal to the number of
genes and it is achieved when all genes encode terminal symbols only.

The translation of a MEP chromosome into a computer program represents
the phenotypic transcription of the MEP chromosomes. Phenotypic translation
is obtained by parsing the chromosome top-down. A terminal symbol specifies
a simple expression. A function symbol specifies a complex expression obtained
by connecting the operands specified by the argument positions with the current
function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,
Gene 3 indicates the operation + on the operands located at positions 1

and 2 of the chromosome. Therefore gene 3 encodes the expression: E3 = a
+ b. Gene 6 indicates the operation + on the operands located at positions 4
and 5. Therefore gene 6 encodes the expression: E6 = c + d. Gene 7 indicates
the operation * on the operands located at position 3 and 6. Therefore gene 7
encodes the expression: E7 = (a + b) * (c + d). E7 is the expression encoded by
the whole chromosome.

There is neither practical nor theoretical evidence that one of these expres-
sions is better than the others. This is why each MEP chromosome is allowed
to encode a number of expressions equal to the chromosome length (number of
genes). The chromosome described above encodes the following expressions:

E1 = a,
E2 = b,
E3 = a + b,
E4 = c,
E5 = d,
E6 = c + d,
E7 = (a + b) * (c + d).
The value of these expressions may be computed by reading the chromosome

top down. Partial results are computed by dynamic programming and are stored
in a conventional manner.



Due to its multi expression representation, each MEP chromosome may be
viewed as a forest of trees rather than as a single tree, which is the case of
Genetic Programming.

2.2 Fitness assignment

As MEP chromosome encodes more than one problem solution, it is interesting
to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness of the best expression
encoded by that chromosome.

For instance, if we want to solve symbolic regression problems, the fitness of
each sub-expression Ei may be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the result obtained by the expression Ei for the fitness case k
and wk is the targeted result for the fitness case k. In this case the fitness needs
to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in the chromosome:

When we have to deal with other problems, we compute the fitness of each
sub-expression encoded in the MEP chromosome. Thus, the fitness of the en-
tire individual is supplied by the fitness of the best expression encoded in that
chromosome.

2.3 MEP strengths

A GP chromosome generally encodes a single expression (computer program).
By contrast, a MEP chromosome encodes several expressions. The best of the
encoded solution is chosen to represent the chromosome (by supplying the fitness
of the individual).

The MEP chromosome has some advantages over the single-expression chro-
mosome especially when the complexity of the target expression is not known.
This feature also acts as a provider of variable-length expressions. Other tech-
niques (such as Gramatical Evolution (GE) [16] or Linear Genetic Programming
(LGP) [4]) employ special genetic operators (which insert or remove chromosome
parts) to achieve such a complex functionality.

3 Algorithms used in experiments

3.1 Artificial Neural Networks

The artificial neural network (ANN) methodology enables us to design useful
nonlinear systems accepting large numbers of inputs, with the design based solely



on instances of input-output relationships. When the performance function has
the form of a sum of squares, then the Hessian matrix can be approximated to
H = JT J ; and the gradient can be computed as g = JT e, where J is the Jaco-
bian matrix, which contains first derivatives of the network errors with respect
to the weights, and e is a vector of network errors. The Jacobian matrix can be
computed through a standard backpropagation technique that is less complex
than computing the Hessian matrix. The Levenberg-Marquardt (LM) algorithm
uses this approximation to the Hessian matrix in the following Newton-like up-
date:

x
k+1 = x

k
− [JT J + µI]−1JT e (1)

When the scalar µ is zero, this is just Newton’s method, using the approx-
imate Hessian matrix. When µ is large, this becomes gradient descent with a
small step size. As Newton’s method is more accurate, µ is decreased after each
successful step (reduction in performance function) and is increased only when
a tentative step would increase the performance function. By doing this, the
performance function will always be reduced in each iteration of the algorithm.

3.2 Support Vector Machines (SVM)

The SVM approach transforms data into a feature space F that usually has a
huge dimension. It is interesting to note that SVM generalization depends on
the geometrical characteristics of the training data, not on the dimensions of
the input space. Training a support vector machine (SVM) leads to a quadratic
optimization problem with bound constraints and one linear equality constraint.
Vapnik [16] shows how training a SVM for the pattern recognition problem leads
to the following quadratic optimization problem

Minimize: W (α) = −
l∑

i=1

αi + 1
2

l∑
i=1

l∑
j=1

yiyjαiαjk(xi, xj) (2)

Subject to
l∑

i=1

yiαi

∀i : 0 ≤ αi ≤ C
(3)

Where l is the number of training examples αis a vector of lvariables and
each component αicorresponds to a training example (xi, yi). The solution of (2)
is the vector α∗for which (2) is minimized and (3) is fulfilled.

3.3 Neuro-Fuzzy System

Neuro Fuzzy (NF) computing is a popular framework for solving complex prob-
lems [3]. If we have knowledge expressed in linguistic rules, we can build a Fuzzy
Inference System (FIS), and if we have data, or can learn from a simulation
(training) then we can use ANNs. For building a FIS, we have to specify the
fuzzy sets, fuzzy operators and the knowledge base. Similarly for construct-
ing an ANN for an application the user needs to specify the architecture and
learning algorithm. An analysis reveals that the drawbacks pertaining to these



approaches seem complementary and therefore it is natural to consider building
an integrated system combining the concepts. While the learning capability is an
advantage from the viewpoint of FIS, the formation of linguistic rule base will
be advantage from the viewpoint of ANN. We used the Adaptive Neuro Fuzzy
Inference System (ANFIS) implementing a Takagi-Sugeno type FIS 7.

3.4 Difference Boosting Neural Network (DBNN)

DBNN is based on the Bayes principle that assumes the clustering of attribute
values while boosting the attribute differences [17]. Boosting is an iterative pro-
cess by which the network places emphasis on misclassified examples in the
training set until it is correctly classified. The method considers the error pro-
duced by each example in the training set in turn and updates the connection
weights associated to the probability P (Um?Ck) of each attribute of that exam-
ple (Umis the attribute value andCk a particular class in k number of different
classes in the dataset). In this process, the probability density of identical at-
tribute values flattens out and the differences get boosted up. Instead of the
serial classifiers used in the AdaBoost algorithm, DBNN approach uses the same
classifier throughout the training process. An error function is defined for each of
the miss classified examples based on it distance from the computed probability
of its nearest rival.

4 EXPERIMENT RESULTS

Our goal is to optimize several error measures: Root Mean Squared Error (RMSE),
Correlation Coefficient (CC), Maximum Absolute Percentage Error (MAP) and
Mean Absolute Percentage Error (MAPE):

RMSE =

√√√√
N∑

i=1

|Pactual,i − Ppredicted,i|,

CC =

N∑
i=1

Ppredicted,i

N∑
i=1

Pactual,i

,

MAP = max
( |Pactual, i − Ppredicted, i|

Ppredicted, i
× 100

)
,

MAPE =
1
N

N∑

i=1

[ |Pactual, i − Ppredicted, i|
Pactual, i

]
× 100,

where Pactual,i is the actual index value on day i, Ppredicted,i is the forecast
value of the index on that day and N = total number of days. The task is to
have minimal values of RMSE, MAP and MAPE and a maximum value for CC.



4.1 Numerical comparisons

We considered 7 year’s month’s stock data for Nasdaq-100 Index and 4 year’s
for NIFTY index. Our target is to develop efficient forecast models that could
predict the index value of the following trade day based on the opening, closing
and maximum values of the same on a given day. For the Nasdaq-100index
the data sets were represented by the ‘opening value’, ‘low value’ and ‘high
value’. NIFTY index data sets were represented by ‘opening value’, ‘low value’,
‘high value’ and ‘closing value’. The assessment of the prediction performance
of the different connectionist paradigms were done by quantifying the prediction
obtained on an independent data set.

4.2 Parameter settings

We used a feed forward neural network with 4 input nodes and a single hidden
layer consisting of 26 neurons. We used tanh-sigmoidal activation function for
the hidden neurons. The training using LM algorithm was terminated after 50
epochs and it took about 4 seconds to train each dataset. For the neuro-fuzzy
system, we used 3 triangular membership functions for each of the input variable
and the 27 if-then fuzzy rules were learned for the Nasdaq-100 index and 81 if-
then fuzzy rules for the NIFTY index. Training was terminated after 12 epochs
and it took about 3 seconds to train each dataset. Both SVM (Gaussian kernel
with γ = 3) and DBNN took less than one second to learn the two data sets [2].

MEP parameter settings Since we want to optimize RMSE, CC, MAP and
MAPE, MEP aim is to obtain an optimal value for a linear combination of these
indices. We also want to find an adequate value for population size and chromo-
some length. In order to choose an adequate combination we performed several
experiments. Parameters used by MEP in these experiments are presented in
Table 1.

Table 1. Values of MEP parameter settings

Parameter Value

Population size
Nasdaq 100
Nifty 50

Number of iteration
Nasdaq 60
Nifty 100

Chromosome length
Nasdaq 30
Nifty 40

Crossover Probability 0.9

Functions set +, - , *, /, sin,
cos, sqrt, ln, lg, log2,
min, max, abs



In Table 2, the results obtained by MEP for several combinations of RMSE,
CC, MAP and MAPE (objective function) for Nasdaq and Nifty are presented.

Table 2. Performance comparison for Nasdaq and Nifty by considering different ob-
jective functions

Function to optimize
Indices Values
RMSE CC MAP MAPE

Results for Nasdaq

MAP + MAPE + RMSE + CC 0.033 0.989 361.95 30.97

MAP + MAPE + 100 * (RMSE + CC) 0.0229 0.9993 97.43 18.14

MAP0.1 + MAPE0.2 + RMSE + CC 0.0358 0.97 3577.55 9.30

(MAP01 + MAPE0.2 + RMSE) * CC 0.021 0.999 96.39 14.33

(MAP01 + MAPE0.2 + RMSE) * (1 – CC) 0.021 0.998 97.93 18.11

(MAP1.5 + MAPE0.2) * (CC + RMSE) 0.227 0.999 97.431 18.133

(MAP0.05 + MAPE0.2) + (RMSE + CC) 0.021 0.999 135.53 15.36

Results for Nifty

MAP + MAPE + RMSE + CC 0.0187 0.999 38.99 4.131

MAP + MAPE + 100 * (RMSE + CC) 0.0161 0.991 42.98 3.78

MAP0.1 + MAPE0.2 + RMSE + CC 0.0134 0.993 43.71 3.24

(MAP01 + MAPE0.2 + RMSE) * CC 0.094 0.896 1254.45 27.79

(MAP01 + MAPE0.2 + RMSE) * (1 – CC) 0.0264 0.98 65.66 6.18

(MAP1.5 + MAPE0.2) * (CC + RMSE) 0.0163 0.997 31.7 3.72

(MAP0.05 + MAPE0.2) * (RMSE + CC) 0.0227 0.993 65.66 5.14

As evident from Table 2, if we use MEP to optimize the objective function
as (MAP + MAPE + RMSE + CC) results obtained were not so good mainly
due to the great difference between MAP and MAPE (which are greater than 1)
and RMSE and CC whose values are between 0 and 1. So, we have to combine
these indices by taking into account the differences. Consequently, the objective
function is modeled as (MAP + MAPE + 100 * (RMSE + CC). Results indicate
this combination is better than the first one. Further several other combinations
were modeled mainly by considering MAP and MAPE at powers smaller than 1.
It is found that some of the results obtained are better than those obtained by
the previous combinations. The best result for Nasdaq is obtained by considering
fourth combination (Table 2).

It is interesting to note that the best combination obtained for Nasdaq seems
to give the worst results to model the Nifty index. Experiments indicate the
best combination is given by (MAP1.5 + MAPE0.2) * (CC + RMSE). MEP also
obtains a good result for Nasdaq using the same combination but not the best
one.

Next two experiments analyze the results obtained by MEP by considering
different population sizes and different values for chromosome length. The values
for the other parameters are those from Table 1. Population size was considered



150 for both test data. Results obtained in 10 different runs were averaged. Also
the best results obtained are presented.

Results obtained for different values for population size are presented in Ta-
ble 3 for both Nasdaq and Nifty test data and results obtained for variable
chromosome length are presented in Table 4.

Table 3. MEP performance comparison for Nasdaq and Nifty by considering different
values for population sizes.

Population size
50 100 150 200

Nasdaq

RMSE
Best 0.022 0.032 0.035 0.0168
Average 0.024 0.027 0.03 0.022

CC
Best 0.999 0.097 0.97 0.992
Average 0.995 0.984 0.98 0.997

MAP
Best 97.43 103.31 103.31 103.31
Average 109.59 100.37 109.33 100.7

MAPE
Best 18.13 9.02 9.08 8.69
Average 23.32 13.58 18.8 18.23

Nifty

RMSE
Best 0.0187 0.163 0.015 0.0138
Average 0.02 0.0196 0.0197 0.019

CC
Best 0.999 0.997 0.999 0.999
Average 0.991 0.979 0.978 0.988

MAP
Best 38.99 31.7 27.64 30.03
Average 53.02 42.225 41.85 48.81

MAPE
Best 4.131 3.72 3.17 3.027
Average 4.9 4.66 4.81 4.34

As depicted in Table 3, best results for Nasdaq is obtained using a population
of 100 individuals and for Nifty using a population of 150 individuals.

As we can see from Table 4 the best results for both Nasdaq and Nifty is
obtained by using a chromosome length of 40.

Results analysis and discussions Table 6 summarizes the results achieved
for the two stock indices using the five intelligent paradigms (SVM, NF, ANN,
DBNN, MEP). Greater values for CC and lower values for RMSE, MAP and
MAPE indicate a better result.

5 CONCLUSIONS

In this paper we apply a new genetic programming technique called Multi Ex-
pression Programming (MEP)for modeling stock indices. The performance of
MEP (empirical results) when compared to the four intelligent paradigms clearly
indicate that it is a novel promising technique for function approximation prob-
lems. It is to be noted that MEP technique gave the lowest MAP values for both



Table 4. MEP performance comparison for Nasdaq and Nifty by considering different
values for chromosome length.

Chromosome length
20 30 40 50

Nasdaq

RMSE
Best 0.021 0.032 0.028 0.0165
Average 0.021 0.027 0.024 0.022

CC
Best 0.998 0.976 0.977 0.993
Average 0.998 0.987 0.985 0.994

MAP
Best 97.43 103.31 103.31 103.31
Average 97.43 100.38 118.5 115.55

MAPE
Best 18.11 9.02 8.91 8.53
Average 18.12 13.52 18.74 15.86

Nifty

RMSE
Best 0.0187 0.0169 0.015 0.014
Average 0.0193 0.023 0.0197 0.02

CC
Best 0.999 0.990 0.999 0.992
Average 0.994 0.977 0.98 0.981

MAP
Best 38.99 42.98 27.64 34.87
Average 43.37 52.1 38.78 40.67

MAPE
Best 4.125 4.08 3.17 3.30
Average 4.33 5.68 4.81 4.75

Table 5. Results obtained by intelligent paradigms for Nasdaq and Nifty test data

SVM NF ANN DBNN MEP

Test results for Nasdaq

RMSE 0.0180 0.0183 0.0284 0.0286 0.021

CC 0.9977 0.9976 0.9955 0.9940 0.999

MAP 481.50 520.84 481.71 116.98 96.39

MAPE 7.170 7.615 9.032 9.429 14.33

Test results for Nifty

RMSE 0.0149 0.0127 0.0122 0.0225 0.0163

CC 0.9968 0.9967 0.9968 0.9890 0.997

MAP 72.53 40.37 73.94 37.99 31.7

MAPE 4.416 3.320 3.353 5.086 3.72



stock indices. The fluctuations in the share market are chaotic in the sense that
they heavily depend on the values of their immediate forerunning fluctuations.
In this research, our main task was to optimize several error measures namely
RMSE, CC, MAP and MAPE.

Taking into account of the No Free Lunch Theorem (NFL) [19], our research
using real world stock data also reveals that it is difficult for one of the intelligent
paradigms to perform well for different stock indices.
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