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Abstract—Since the availability of social networks data and
the range of these data have significantly grown in recent
years, new aspects have to be considered. In this paper we
address computational complexity of social networks analysis
and clarity of their visualization. Our approach uses combi-
nation of Formal Concept Analysis and well-known matrix
factorization methods. The goal is to reduce the dimension of
social network data and to measure the amount of information
which is lost during the reduction.
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I. INTRODUCTION

As a social network we denote a set of subjects which

are linked together by some kind of relationship. Social

networking – in the sense of providing services to persons

to stay in touch, communicate and express their relations –

received great attention in the recent years. The fact that the

name of one such service has been contender in the choice

for the 2007 Word of the year1 is an evidence of it.

Freeman in [6] underlines the needs for Social Networks

Visualization and provides overview of the development

of their visualization. The development from hand drawn

images to complex computer-rendered scenes is evident.

Also the shift from classical sociograms to new approaches

and methods of visualization is evident. What remains is the

need for clarity of such visualization.

But the social network data are not limited to friendship

between people. Many different relations, like ties between

animals [14], Web pages and links between them [1], or

more generally whole Websites [10], can be also considered.

Because of this, the availability and range of social network

data increased dramatically in recent years. As a specific

kind of network data can be considered so-called two-mode
network data. This data consists of two sets – set of subjects

and set of events which are, or are not, connected. Paper [7]

introduces the usage of Formal Concept Analysis (FCA),

a well-known general data analysis method, in this area

of social networks and reviews the motivation for finding

1The word Facebook was selected into the word list by both the American
Dialect Society and MerriamWebster dictionary.

relations hidden in data that are not covered by simple graph

visualization. The paper shows that the Galois lattice is

capable of capturing all three scopes of two-mode network

data – relation between subjects, relation between events and

also the relation between subjects and events.

A. Complexity aspects

As can be seen both from the mentioned paper and exper-

iments presented below – with the increasing range of input

data, the Galois lattice becomes soon very complicated and

the information value decreases. Also the computational

complexity grows quickly.

Comparison of computational complexity of algorithms

for generating Galois lattice can be found in [11]. As

stated in the paper, the total complexity of lattice generation

depends on the size of input data as well as on the size of

output lattice. This complexity can be exponential. Important

aspect of these algorithms is their time delay complex-

ity (time complexity between generating two concepts).

Recently published paper [4] describes linear time delay

algorithm. In many applications it is possible to provide

additional information about key properties interesting to

the user which can be used to filter unsuitable concepts

during the lattice construction [2]. In some applications it is

also possible to select one particular concept and navigate

through its neighbourhood. These approaches allow us to

manage larger scale of data, but cannot provide the whole

picture of the lattice.

Many social network data can be seen as object-attribute

data or simply matrix (binary and fuzzy). Therefore they can

be processed using matrix factorization methods which have

been proven to be useful in many data mining applications

dealing with large scale problems. In our paper we present

results of using Formal Concept Analysis and dimension

reduction methodson social network data. Our aim is to

allow processing of larger amount of data. Our approach is

compatible with the approaches mentioned in the previous

paragraph.

Clearly, some bit of information has to be forgotten, but

we want to know, how close or far from the original result we

are. The paper [15] introduces a method for measuring so-
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Figure 1. Galois lattice before reduction

called normalized correlation dimension (ncd) which can be

seen as the number of independent variables in the dataset.

Singular value decomposition has already been used in the

field of social network data ([5]) to determine the position

of nodes in the network graph. Next chapter of this paper

reviews some basic notions of aforementioned theories. In

the third chapter we describe our experiments in detail.

II. PRELIMINARIES

A. Formal concept analysis

Formal concept analysis (shortly FCA, introduced by

Rudolf Wille in 1980) is well known method for object-

attribute data analysis. The input data for FCA we call

formal context C which can be described as C = (G, M, I)
– a triplet consisting of a set of objects G and set of attributes

M , with I as relation of G and M . The elements of G are

defined as objects and the elements of M as attributes of the

context.

For a set A ⊆ G of objects we define A
′
as the set

of attributes common to the objects in A. Correspondingly,

for a set B ⊆ M of attributes we define B
′
as the set

of objects which have all attributes in B. A formal concept
of the context (G, M, I) is a pair (A, B) with A ⊆ G,

B ⊆ M , A
′
= B and B

′
= A. B(G, M, I) denotes the set

of all concepts of context (G, M, I) and forms a complete

lattice (so called Galois or concept lattice). For more details,

see [8].

Galois lattice may be visualized using so-called Hasse

diagram. In this diagram, every node represents one formal

concept from the lattice. Nodes are usually labelled by

attributes (above the node) and objects (below the node) pos-

sessed by a concept. For the sake of clarity it is sometimes

used so-called reduced labeling (see fig. 1 for illustration)

which means that attributes are shown only at the first node

(concept) they appear in. This holds reciprocally for objects.

These two labelings are equivalent. Detailed explanation is

provided in the Experiment section.

B. Singular value decomposition

Theorem 1: Let A is an m × n rank-r matrix. Let

σ1 ≥ . . . ≥ σr be the eigenvalues of a matrix
√

AAT .

Then there are orthogonal matrices U = (u1, . . . , ur) and

V = (v1, . . . , vr), whose column vectors are orthonormal,

and a diagonal matrix Σ = diag(σ1, . . . , σr). The decom-

position A = UΣV T is called singular value decomposition
of matrix A and numbers σ1, . . . , σr are singular values of

the matrix A.

Using this theorem we can obtain a decomposition of the

original matrix A. We have at most r non-zero singular

numbers, where rank r is the smaller of the two matrix

dimensions. Because the singular values usually fall quickly,

we can take only k greatest singular values and create

a k-reduced singular decomposition of A. We call Ak =
UkEkV Tk a k-reduced singular value decomposition (rank-

k SVD).

Theorem 2: (Eckart-Young) Among all m × n matrices

C of rank at most k, Ak is the one that minimises ||Ak −
A||2F =

∑
i,j

(Ai,j − Cw,j)2.

Briefly said, SVD allows us to decompose one matrix

into several others. By multiplying them back we can

obtain the original matrix. Another choice is to remove

some part of decomposed matrices before the multiplication,

which will give us matrix similar to the original one. For

more details please see [13]. Description of Non-negative

matrix factorization (NMF) and Semidiscrete decomposition

method (SDD) is omitted due to the lack of space. For the

purpose of our paper, this method works in a similar way as

the two mentioned above. Detailed explanation can be found

in [12], [9].

C. Correlation dimension

The idea behind the Correlation dimension comes from

the theory of Fractal dimension and is based on studying the

distance between two random data points. Suppose we have

a binary dataset D containing |D| objects and K attributes.

Consider random variable (denoted by ZD) whose value

is L1 distance (attributes used as coordinates) between

two randomly chosen objects from D. The distance varies

from 0 (objects have the same attributes) to K (objects

differ in all attributes). Now we can define the function

f : N → R as f(r) = P(ZD < r). For a given dataset

D, we can compute the set of points I(D, r1, r2, N)
by

{
(log r, log f(r)) | r = r1 + i(r2−r1)

N , i = 0 . . . N
}

.

The correlation dimension cdR(D, r1, r2, N) for a binary

dataset D and parameters r1, r2 is the slope of the

least-squares linear approximation I. One would expect

that the dimension of dataset with K independent attributes

is K. To achieve this, we can normalize the result using

random binary dataset having K independent variables such

that the probability of i-th variable being one is equal to
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Figure 2. Social network - before and after reduction to ranks 8, 5, 3

Figure 3. Context visualization (original, rank 8, 5, 3)

the probability of randomly chosen object from dataset D
having i-th attribute. For more details see [15].

III. EXPERIMENTS

A. Real-world experiment

In our first example, we will use well known dataset from

[3]. It contains information about participation of 18 women

in 14 social events during the season. This participation can

be considered as two-mode network or as formal context

(binary matrix with rows as women and columns as social

events). Visualization of this network as bipartite graph can

be seen in the upper part of figure 2. Events are represented

by nodes on the first row. These nodes are labelled by the

event numbers. The second row contains nodes representing

women. These nodes are labelled by two first letters of their

names – Evelyn, Laura, Theresa, Brenda, Charlotte, Frances,

Eleanor, Pearl, Ruth, Verne, Myrna, Katherine, Sylvia, Nora,

Helen, Dorothy, Olivia, Flora. Participation of the woman

in the event is represented by edge between corresponding

nodes. Illustration of the formal context can be seen in the

left part of figure 3. Rows correspond to women (in the

order mentioned earlier), columns to events. Black rectangle

denotes participation.

Now, let’s describe the computed Galois lattice (figure

1). Each node in the graph represents one formal concept.

Every concept is a set of objects (women in this case)

and set of attributes (events). Edges express the ordering

of concepts. Reduced labelling is used here. Therefore if

concept has an attribute (event), every connected concept

lying under the labelled one contains the attribute too, and

vice versa.

The lattice contains all combinations of objects and at-

tributes present in the data. One can easily read that Sylvia

Figure 4. Galois lattice at rank 5

participated in all events that Katherine did. Also everyone

who participated in the events 13 and 14, also participated in

the event 10. The reasons for these nodes to be separate, are

the women Dorothy and Myrna that took part in the event

10, but not in the events 13 and 14.

Due the high number of nodes and edges, many interesting

groups and dependencies are hard to find. Now we will try

to reduce the formal context to lower dimension and observe

the changes. We have performed reduction (using NMF

method) of original 18x14 context to ranks 13, . . . , 1 and

computed corresponding Galois lattices. Modified contexts

can be seen in the remaining part of figure 3. Visualiza-

tion of network into bipartite graph (fig. 2) reveals some

changes (e.g. cutting the events 0 and 1 off), but is still too

complicated. The Galois lattice can give us better insight.

Detailed look at the reduced lattice (fig. 4 for rank 5)

shows that the general layout has been preserved as well

as the most important properties (e.g. mentioned implication

about Sylvia and Katherine). The reduction to rank 5 caused

merging of nodes previously marked by attributes 10, 13, 14

(which we have discussed earlier).

B. Synthetic datasets

To analyse results of described approach on larger data,

we have generated synthetic binary dataset with 400 rows,

40 attributes and 20% density. This corresponds to two-

mode network with 400 subjects and 40 events. Each subject

participated at average in 8 events.

The table I contains results of this experiment. We have

tested three different reduction methods - NMF, SVD and

SDD. First column of each group contains the number of for-

mal concepts in computed lattice. Different rows correspond

to different ranks of reduction (first one contains information
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NMF SVD SDD
| B | ncd | B | ncd | B | ncd

original 15477 39 15477 39 15477 39
rank 35 10672 43 15459 39 7750 31
rank 30 5429 35 15127 38 4747 23
rank 25 2665 30 14621 28 2824 23
rank 20 1016 25 11831 29 1377 17
rank 15 348 21 7288 19 514 14
rank 10 149 17 3322 10 169 8
rank 5 56 6 526 6 4 4

Table I
SYNTHETIC DATASET REDUCTION

about original data). Second column contains normalized

correlation dimension.

Since the original data have been created as uncorrelated,

their normalized correlation dimension is close to the num-

ber of columns. The reduction tries to resemble the original

data maximally, so it often preserves repeatedly appearing

patterns. Therefore we expect ncd to decrease during the

rank reduction. Computed results verify this expectation.

To estimate roughly the ratio of reduction, one does not

have to compute the whole original lattice. The normalized

correlation dimension – which is computed more rapidly and

using formal context only – can be used to do this.

IV. CONCLUSIONS

We have seen that Galois lattice is suitable for displaying

dependencies in two-mode network data. The restrictive

factor is the size and inner structure of input data. Using

matrix factorization methods, we can simplify the structure

to allow better insight into the data, but still to retain the

most important properties.

During the experiments we have observed worsen results

of normalized correlation dimension when dealing with

contexts with low rows/columns ratio (near square contexts).

This can be explained by the probabilistic nature of indepen-

dent context generation (variables can be easily reassigned

after column permutations). This influence can be partially

eliminated by averaging the results among several tries.

In our future work we would like to analyse the effects

of different reduction methods. It would be also interesting

to find some rules and limitations of reduction.
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