

A Bacterial Evolutionary Algorithm for Automatic Data Clustering

Swagatam Das
1
, Archana Chowdhury

2
 and Ajith Abraham

3,4

1Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India

swagatamdas19@yahoo.co.in
2
M.P.C.C.E & T,Bhilai, Madhya Pradesh, India

archana81077@yahoo.com

3Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and Technology, Norway
4

Machine Intelligence Research Labs - MIR Labs

ajith.abraham@ieee.org

Abstract- This paper describes an evolutionary

clustering algorithm, which can partition a given dataset

automatically into the optimal number of groups through

one shot of optimization. The proposed method is based on

an evolutionary computing technique known as the

Bacterial Evolutionary Algorithm (BEA). The BEA draws

inspiration from a biological phenomenon of microbial

evolution. Unlike the conventional mutation, crossover and

selection operaions in a GA (Genetic Algorithm), BEA

incorporates two special operations for evolving its

population, namely the bacterial mutation and the gene

transfer operation. In the present context, these operations

have been modified so as to handle the variable lengths of

the chromosomes that encode different cluster groupings.

Experiments were done with several synthetic as well as

real life data sets including a remote sensing satellite image

data. The results estabish the superiority of the proposed

approach in terms of final accuracy.

Keywords: Clustering, Pattern Recognition, genetic

Algorithm, Bacterial Evolution, Metaheuristics.

I. INTRODUCTION

The objective of clustering is to partition unlabeled data

[1] into groups of similar objects. Each group, called a

‘cluster’, consists of objects that are similar between

themselves and dissimilar to objects belonging to other

groups. Clustering, or cluster analysis, is prevalent in

any discipline that involves analysis of multivariate

data. In the past few decades, cluster analysis has played

a central role in diverse domains of science and

engineering [1-3].

Clustering algorithms can be hierarchical or partitional

[2]. In hierarchical clustering, the output is a tree

showing a sequence of clustering with each cluster

being a partition of the data set [2]. Partitional clustering

algorithms, on the other hand, attempts to decompose

the data set directly into a set of disjoint clusters. They

try to optimize certain criteria (e.g. a Squared-error

function).

The problem of partitional clustering has been

approached from the diverse fields of knowledge like

statistics (multivariate analysis) [4], graph theory [5],

expectation maximization algorithms [6], artificial

neural networks [7], evolutionary computing [8], swarm

intelligence [9] and so on. While there remains a

plethora of clustering algorithms, the important issue of

determining the correct number of clusters in a virgin

dataset is rarely touched upon. Finding the exact number

of clusters is difficult because, unlike in supervised

learning, there are no class labels for the data and, thus,

no obvious criteria to guide the search. An account of

the works undertaken in this direction can be found in

[8].

In this work, the problem of automatic clustering has

been approached from a framework of the Bacterial

Evolutionary Algorithm (BEA) [10]. The BEA is a

relatively new addition to the vast family of

evolutionary computing techniques. Nature has served

as an endless resource of ideas and metaphors for

building the variations of the basic GA scheme [11].

Instead of using the conventional crossover, mutation

and selection cycles of a GA, BEA employs two special

operations to evolve its population of chromosomes

(each of which encodes one trial solution of the

optimization problem). The first of these is bacterial

mutation, which mimics a process occurring in the

bacterial genetics level and aims at improving the parts

within the chromosomes. The second one, called gene

transfer operation, is employed for the exchange of

information between chromosomes in the population. It

is motivated by the phenomenon of transfer of strands of

genes through a population of bacteria. By means of this

mechanism, one bacterium can rapidly spread its genetic

information to the other cells without any crossover

operation. Previously there have been only a few

applications of the BEA mainly to model identification

and fuzzy system parameters discovery [9]. This, to the

best of our knowledge is the first paper that employs

BEA to a pattern recognition problem.

The proposed algorithm, called by us the ACBEA

(Automatic Clustering with BEA), encodes one

complete partitioning of the data in a chromosome such

that each part or gene in the chromosome represents a

cluster. Since the number of clusters is not known a

priori, the chromosomes come with variable lengths,

each encoding a different number of classes in the data.

We have incorporated a new operation called

chromosome repair and also have modified both the

mutation and gene transfer operations slightly to handle

these variable-size chromosomes.

II. THE CRISP CLUSTERING PROBLEM

A pattern is a physical or abstract structure of objects. It

is distinguished from others by a collective set of

attributes called features, which together represent a

pattern [8]. Let P = {P1, P2... Pn} be a set of n patterns or

data points, each having d features. These patterns can

also be represented by a profile data matrix Xn×d having

n d-dimensional row vectors. The i-th row

vector
iX

r
characterizes the i-th object from the set P and

each element Xi,j in iX
r

corresponds to the j-th real value

feature (j = 1, 2,,d) of the i-th pattern (i =1,2,...., n).

Given such an Xn×d, a partitional clustering algorithm

tries to find a partition C = {C1, C2,......, CK}of K

classes, such that the similarity of the patterns in the

same cluster is maximum and patterns from different

clusters differ as far as possible. The partitions should

maintain the following properties:

1. Φ≠iC },...,2,1{ Ki ∈∀ .

2. Φ=∩ ji CC , ji ≠∀ and },...,2,1{, Kji ∈ .

3. PC
K

j

j =

=

U
1

 (1)

Since the given dataset can be partitioned in a number

of ways maintaining all of the above properties, a fitness

function (some measure of the adequacy of the

partitioning) must be defined. The problem then turns

out to be one of finding a partition C
*
 of optimal or

near-optimal adequacy as compared to all other feasible

solutions C = { C
1
, C

2
,........, C

N(n,K)
} where,

 i

iK

i

i
iK

i

K

K
KnN)()1(

!

1
),(

1

−

−= ∑

=

 (2)

is the number of feasible partitions. This is same as,

C

Optimize),(dn CXf
×

 (3)

where C is a single partition from the set C and f is a

statistical-mathematical function that quantifies the

goodness of a partition on the basis of the distance

measure of the patterns. It has been shown in [28] that

the clustering problem is NP-hard when the number of

clusters exceeds 3.

III. AUTOMATIC CLUSTERING WITH BEA

In this Section, we describe the automatic clustering

algorithm based on the BEA. The ACBEA starts with a

population of variable length chromosomes, each of

which encodes an entire grouping of the data. To

measure the compactness, we first define the mean

spread of the i-th cluster by taking the mean pair wise

distance between the objects belonging to a cluster. This

can be done by adding the elements of the upper or

lower triangular portion of the adjacency matrix

constructed for each cluster and dividing the sum by the

total number of elements added i.e. 2/)1(−ii nn where

ni is the number of objects belonging to the cluster

under test. The mean spread of the i-th cluster can be

mathematically formalized as:

),(
)1(

2

1 1
j

n

k

n

j

k

ii

i XXd
nn

MS
i i rr

∑∑
= =−

= (4)

where kX
r

and jX
r

are two data points belonging to the

same cluster Ci and),(qi XXd
rr

denotes their distance

(similarity measure) in the feature space. At this point

please note that we do not use here the popular criterion

of intra-cluster variance, which squares the distance

value and is more strongly biased towards the

spherically shaped clusters around the cluster centroid.

The compactness is defined as the reciprocal of the

mean spread:

i

i
MS

Com
1

= (5)

3.1 Encoding the Chromosomes and Population

Initialization

In order to make room for several possible choices of

the number of clusters, ACBEA encodes an entire

partitioning of the data in a single chromosome or

bacterium cell. In each such chromosome, a gene

encodes one cluster [12]. Thus if the r-th chromosome

contains K genes { r
K

r
i

r GGG ,.....,,.....,1
}, it actually

encodes a portioning of the dataset into K clusters. Each

such group or cluster r
iG of the r-th chromosome

contains
r

in number of data points such that

nn
K

i

r

i =∑
=1

where n is the total number of data points in the

given dataset. Each gene encoding a cluster actually

consists of the integral labels of those data points, which

belong to that cluster. For example, the i-th gene r
iG of

the r-th chromosome contains r
in

integers },....,,...,,{ 21
r

n

r
ij

r
i

r
i r

i

llll such that },....,1{ nl
r
ij ∈ and

r

ijl physically means that the j-th object from the data set

P = {P1, P2... Pn} under test, belongs to the i-th cluster

encoded by the r-th chromosome. This representation

scheme has been shown diagrammatically in Figure 1.

FIGURE 1. CHROMOSOME REPRESENTATION SCHEME FOR ACBEA

In this work, we have refrained from using an encoding

based on cluster centers even though these have been

the most commonly found encoding scheme in the EA

clustering literature. Initially each chromosome is

generated in such a fashion that the number of clusters

to be encoded by it is chosen randomly from the set of

integers {2, 3..., KMAX}. Hence the possible number of

clusters may vary between 2 and KMAX which may be

supplied by the user.

3.2 Genetic Operators

1) Bacterial Mutation After the generation of the initial

population, the bacterial mutation is applied to each

chromosome one by one. The mutation operators of the

ACBEA differ to some extent from those of the classical

BEA reported in [10]. They are specifically designed to

allow the length of the chromosomes to be changed

dynamically as the evolutionary learning process

progresses. In bacterial mutation, the first chromosome

is chosen and then it is reproduced in m – 1 clone. Each

clone is then mutated probabilistically with the one of

the following three operators:

a) The random replacement mutation which occurs

with a probability Prr.

b) The Split-gene mutation occurring with a

probability Psg.

c) The Merge-gene mutation occurring with a

probability of Pmg.

The clones are next evaluated according to some

fitness function (to be discussed in the next section).

The best chromosome from the m individuals is selected

to remain in the population and the other m–1

individuals are deleted. This genetic operation is applied

to all the chromosomes in the current population. Below

we elaborate each mutation operator.

a)The random replacement mutation: In this

operation, the i-th gene of a chromosome is selected

randomly. A new one, not previously contained in the

cluster encoded by that gene, with a probability Pdr,

replaces each data label of the selected gene. This

operation for the j-th data label of the i-th gene in r-th

chromosome may be expressed as:

 Replace with kl , if rand (0, 1) < Pdr

where kl is an integer and

},...,1{ nlk ∈ but {∉kl
r

n

r

ij

r

i

r

i r
i

llll ,....,,...,, 21
},

},....,,...,,{ 21

r

n

r

ij

r

i

r

i r
i

llll is the set of data labels contained in

the i-th gene and rand (0, 1) is a uniformly distributed

random number in [0, 1].Thus the cluster encoded by

the mutated gene is reconfigured, although the number

of data points belonging to it remains unaltered.

b) The Split-gene mutation: In this case, we first rank

the genes of a target chromosome in the ascending order

of their cohesiveness. Next we set a gene selection

probability Pgs. Based on Pgs, Sj number of genes with

relatively low cohesion are selected for splitting, where

Sj < K/2 and the minimum value of Sj is 1. Those

selected may be represented as: }...,,...{ 1

r

sj

r

si

r

s GGG and

},...,,...,{ 1

r

K

r

i

rr

si GGGG ∈ . Finally we randomly split

each gene in }...,,...{ 1

r

sj

r

si

r

s GGG into two clusters. The

resulting number of genes in the chromosome becomes

K+2.Sj and this number has to be smaller than KMAX,

otherwise the mutation operator terminates.

c) The Merge-gene mutation: Like the previous case,

we first set a gene selection probability Pgm. Based on

Pgm, mj number of genes with relatively low cohesion

are selected for merging, where mj < K/2 and the

minimum value of mj is 2. The selected genes in this

way form a merging pool: }...,,...{ 1

r

mj

r

mi

r

m GGG where

mj<K and },...,,...,{ 1

r

K

r

i

rr

mi GGGG ∈ . Finally the genes

in }...,,...{ 1

r

mj

r

mi

r

m GGG are merged together into a single

gene and is returned to a random location of the

chromosome. In this way the length of the chromosome

becomes 1+− jmK and this length must be greater than

2 (the minimum number of possible clusters) or

otherwise the mutation operator terminates.

After mutating the i-th gene, ACBEA calls for a

procedure for repairing the chromosomes. During the

repairing procedure, all the genes of a mutated

chromosome are scanned to remove duplicates in such a

way that if a data label is found in another gene, it is

removed. For those record labels that have not been

assigned to any of the genes after their removal, they are

randomly assigned to one of the genes (except the one

from which they were removed).

2) The Gene Transfer Operation: The gene transfer

operation is schematically illustrated in Figure 2. It

takes place through the following steps:

r

KG

r
G1

r
G2

r

iG

 r

n

r

ij

r

i

r

i r
i

llll ,....,,...,, 21

a) The population is sorted in two halves: the half with

individuals with better fitness is called the superior half

while the other half is called the inferior half.

b) One chromosome is randomly picked up from the

superior half and named source chromosome, while

another one is selected at random from the inferior half

and is named destination chromosome. Now according

to some given criteria a ‘good’ part or gene from the

source chromosome is to be transferred to the

destination chromosome. Here, in context to the

clustering problem, goodness of a cluster encoded by

each gene is synonymous to its cohesiveness given by

equations (4) and (5).

In ACBEA, the gene with highest compactness value is

transferred from the source chromosome to the

destination chromosome. In the destination

chromosome, the coming gene overwrites a randomly

selected gene with lower compactness value.

d) Steps 1 through 3 are repeated Ninf times where Ninf

stands for the number of infections per generation.

FIGURE 2. SCHEME FOR THE GENE TRANSFER OPERATION.

After the transfer of the gene to an inferior

chromosome, it goes through a repairing mechanism,

where all the genes of the chromosomes are thoroughly

scanned to remove any duplicate data-label that occurs

in more than one gene. The mutation and gene transfer

operations are looped until a maximum number of

generations have been exceeded. Flow-chart of the

entire process has been provided in Figure 3.

FIGURE 3. FLOW-CHART FOR BEA-BASED CLUSTERING ALGORITHM.

3.3 Designing the Fitness Function

Selection of a suitable fitness function acts as a major

driving force behind any evolutionary computing

technique. The fitness function of the ACBEA is based

on a recently developed clustering validity index.

Cluster validity indices correspond to the statistical-

mathematical functions used to evaluate the results of a

clustering algorithm on a quantitative basis.

The fitness function of the ACBEA is based on the

CS measure, recently proposed by Chou et al. [13].

Before applying the CS measure; centroid of a cluster is

computed by averaging the data vectors belonging to

that cluster using the formula

 ∑
∈

=

ij CX

j
i

i X
N

m
r

rr 1
 (6)

A distance metric between any two data points
iX
r

 and

jX
r

 is denoted by),(ji XXd
rr

. Then the CS measure can

be defined as,

Superior

Half

Inferior

Half

∑

∑ ∑

=
≠∈

= ∈
∈

=
K

i

ji
ijKj

K

i CX

qi
CXi

mmd
K

XXd
NK

KCS ii
iq

1
,

1

)}],({min[
1

)}],({max
1

[
1

)(
rr

rr

r
r

∑

∑ ∑

=
≠∈

= ∈
∈

=
K

i
ji

ijKj

K

i CX

qi
CXi

mmd

XXd
N

ii
iq

1
,

1

)}],({min[

)}],({max
1

[

rr

rr

r
r

 (7)

A lower value of CS (K) indicates the better quality of

the partitioning. As can easily be perceived, this

measure is a function of the ratio of the sum of within-

cluster scatter to between-cluster separation. The CS

measure based fitness function (to be maximized) for

the i-th chromosome encoding K classes may be

described as:

epsKCS

f
i +

=
)(

1
1 (8)

where eps is a small bias term equal to 0.002 and it

prevents the fitness function from moving up to infinity

if somehow CSi (K) becomes zero for a chromosome.

We choose CS measure as the basis of the fitness

evaluation mechanism, as according to the authors, it is

more efficient in tackling clusters of different densities

and/or sizes than the other popular validity measures,

the price being paid in terms of high computational load

with increasing K and n.

IV. EXPERIMENTAL SETUP

This section describes the setup for the simulation

experiments undertaken to compare the performance of

ACBEA with three other competitive clustering

algorithms using five benchmark datasets of varying

levels of complexity.

4.1 The Datasets Used

We have used five real life datasets to compare the

contestant clustering methods. The following real-life

datasets [16] are used in this study. Here n = number of

data points, d = number of features and K = number of

clusters.

1) Iris plants database (n =150, d = 4, K = 3)

2) Glass (n =214, d = 9, K = 6)

3) Breast cancer data set (n = 683, d = 9, K = 2)

4) Wine (n = 178, d = 13, K = 3)

5)Vowel Dataset (n = 871, d = 3, K = 6)

4.2 Algorithms for Comparisons

In order to evaluate the performance of BEA, we

compare it with two recently developed automatic

clustering algorithms known as the DCPSO (Dynamic

Clustering with Particle Swarm Optimization) [15] and

GCUK (Genetic Clustering with an Unknown K). We

also take into account the classical k-means algorithm

[17] for the comparative study.

4.3 Algorithmic Settings

This paper uses the “usual” parameter settings for the

three search techniques. Table 1 summarizes these

settings. In addition, the same parameter settings have

been used for all the clustering problems to make the

comparison fair. In Table 1, Popsize indicates the size of

the population.

Table 1: Parameters for competitive clustering algorithms

4.4 Simulation Strategy

 All the three optimization algorithms are stochastic in

nature. Hence, for each problem they have been run

several times. Since the algorithms have been made to

work on the same framework as described in section 4,

the actual number of classes has not been supplied to

any of them for any of the problems detailed in section

5.Out of multiple runs for a given algorithm for a given

problem, only those were considered successful in

which the algorithm could determine the true number of

classes. The results have been stated in terms of the

mean values and standard deviations over 50 successful

runs in each case. Since the population size for DCPSO,

PSO and GA are markedly different; the present authors

choose number of fitness evaluations as a measure of

computation time instead of ‘generations’ or ‘iterations’.

Number of fitness evaluations roughly equals the

product of the population size and the number of

generations. In this study, all the competitor algorithms

except the K-means were allowed to run for 2 × 10
5

function evaluations. The algorithms were compared

based on:

1) The CS measure as defined in equation (7);

2) The intra-cluster distances, i.e. the distance between

data vectors within a cluster, where the objective is

to minimize the intra-cluster distances.

GCUK DCPSO ACBEA

Para-meter Value Para-

meter

Value Para-

meter

Value

Pop_size 50 Pop

size

100 Pop_size 20

Cross-over

Prob-ability

µc

0.8 Inertia

Weight

0.72 Prr 0.54

Psg 0.31

Muta-tion

prob-ability

µm

0.001 C1, C2 1.494 Pmg 0.23

Pini 0.75 Pdr 0.30

Pgm 0.44

Kmax

Kmin

20

2

Kmax

Kmin

20

2

Kmax

Kmin

20

2

3) The inter-cluster distances, i.e. the distance between

the centroids of the clusters, where the objective is to

maximize the distance between clusters.

4) The robustness, i.e. the number of times an automatic

clustering algorithm can find out the correct number

of clusters.

The latter two objectives respectively correspond to

crisp, compact clusters that are well separated. All the

algorithms discussed here have been developed from

scratch in Visual C++ platform on a Pentium IV, 2.2

GHz PC, with 512 KB cache and 2 GB of main memory

in Windows Server 2003 environment. The graphs and

figures have been obtained using MATLAB 6.5.

V. EMPIRICAL RESULTS

Table 2 summarizes the clustering result over five

public domain datasets in terms of the final CS-measure

value, mean inter-cluster, and intra-cluster distances.

For the population based search algorithms, the mean

best value and the standard deviation over 50 successful

runs have been reported. Except for the K-means

algorithm, no method has been supplied with the exact

number of classes. Only a maximum number of clusters

(20 for all cases) has been specified for all of them.

Figure 4 provides a visual feel of the performance of

fourclustering methods over the iris dataset. The actual

four-dimensional dataset has been plotted in 3

dimensions using the first three features only.

Row 1 of Table 2 and Figure 4 indicate the fact

that Fisher's iris dataset is not sufficiently challenging to

compare the performance between advanced clustering

algorithms despite its great popularity in the clustering

community. All the three methods performed equally

well on this dataset whereas K-means algorithm

frequently got stuck in local minima. Substantial

performance differences occur for challenging

clustering problems with a large number of data-items

and clusters as well as overlapping cluster shapes. Over

the wine dataset, accuracy of K-means and the new

method where comparable, however this was the only

case where PSO based clustering yielded best results.

Over the rest three datasets and especially for the vowel

data, that has strongly overlapping classes associated

with it, the BEA method gives best results in terms of

robustness and accuracy. It can be seen that in almost all

the cases BEA based method gives a greater number of

successful runs.

Since all the datasets used here have their nominal

partitions known to the user, the present work also

computes the mean number of misclassified data-points.

This is the average number of objects that were assigned

to clusters other than according to the nominal

classification. Table 4 reports the corresponding mean

values and standard deviations over 50 successful runs

for all the three population based algorithms. One can

easily see that the DCPSO based dynamic clustering

algorithm yields lowest number of misclassified items in

most of the cases. However, for breast cancer dataset,

performance of the K-means is comparable to the new

method.

a)Unlabelled 3-D plot of (b) Clustering with BEA

Iris data

(c) ClusteringwithGCU (d)Clustering with DCPSO

FIGURE 4: PERFORMANCE OF FOUR CLUSTERING METHODS OVER THE

IRIS DATASET

A non-parametric statistical significance test called

Wilcoxon’s rank sum test for independent samples [18,

19] has been conducted at the 5% significance level on

the CS measure data of Table 2. Table 3 shows reports

the P-values produced by Wilcoxon’s rank sum test for

comparison of the error scores of two groups (one group

corresponding to BEA and the other corresponding to a

competitor algorithm) at a time. As a null hypothesis, it

is assumed that there is no significant difference

between the mean values of two groups. Whereas, the

alternative hypothesis is that there is significant

difference in the mean values of the two groups. All the

P-values reported in the Table are less than 0.05 (5%

significance level). This is strong evidence against the

null hypothesis, indicating that the better mean values of

the performance metrics produced by BEA is

statistically significant and has not occurred by chance.

TABLE 2. CLUSTERING RESULT OVER FIVE REAL LIFE DATASETS (FOR ALALGORITHMS, MEAN AND STANDARD DEVIATION OVER 50 SUCCESSFUL

RUNS AND EQUAL NUMBER OF FUNCTION EVALUATIONS 2×105
 HAS BEEN USED FOR THE LAST THREE ALGORITHMS)

TABLE 3. P-VALUES PRODUCED BY WILCOXON’S RANK SUM TEST TAKING COMPARING BEA WITH OTHER ALGORITHMS

 ON THE CS-MEASURE DATA OF TABLE 2.

TABLE 4. MEAN CLASSIFICATION ERROR OVER NOMINAL PARTITION AND STANDARD DEVIATION OVER THE 50 SUCCESSFUL RUNS ON THE REAL

WORLD DATASETS FOR THE FOUR ALGORITHMS COMPARED

Dataset Algorithm successful

runs %

CS measure Intra cluster Distance Inter cluster Distance

Iris

K-means NA 0.9562±0.06021 3.542±0.056 1.726±0.052

BEA 88% 0.1735±0.029 3.125±0.068 2.487±0.063

DCPSO 40% 0.6508±0.073 3.144±0.056 2.0144±0.0474

GCUK 48% 0.9081±0.1267 3.274±1.72 2.0058±0.561

Wine

K-means NA 1.2645±0.0021 3.975±0.0026 0.7113±0.00054

BEA 86% 0.8065±0.0037 3.112±0.02573 0.8915±0.00663

DCPSO 60% 0.7721±0.046 3.851±0.0173 0.9613±0.00054

GCUK 54% 1.3945±0.0281 3.065±0.1226 0.7563±0.0078

Breast-

Cancer

K-means NA 0.6445±0.041 6.975±0.0026 1.7113±0.00054

BEA 68% 0.4265±0.0035 5.0212±0.02573 1.2215±0.03663

DCPSO 22% 0.6021±0.32 5.851±0.0173 2.9613±0.00054

GCUK 30% 0.548±0.0478 6.851±1.0161 2.4413±0.0194

Vowel

K-means NA 2.32±0.0047 149962.75±0.0026 1898.7113±0.0054

BEA 74% 0.9265±0.075 142809.12±0.02573 2982.8215±0.0663

DCPSO 56% 1.1321±0.231 15002.51±0.0173 1932.9613±0.00054

GCUK 26% 2.8921±0.62 149987.34±0.0923 2009.903±0.0173

Glass

K-means NA 0.92±0.68 11054.561±309.4 1053.890±22.14

BEA 80% 0.7065±0.0062 10974.644±210.1 954.672±19.04

DCPSO 66% 1.1089±0.29 11088.546±333.9 1031.872±34.95

GCUK 48% 1.0977±0.112 11109.302±435.6 1077.929±18.77

Dataset P-Value
DCPSO GCUK k-means

Iris 1.8267e-004 1.8165e-004 4.9367e-005

Wine 1.4623e-004 1.8143e-005 3.8264e-005

Breast Cancer 1.9252e-004 1.7446e-004 1.3573e-004

Vowel 1.6924e-004 1.8001e-004 1.8115e-004

Glass 1.8824e-004 1.8179e-004 1.8235e-004

Dataset Mean Classification Error

BEA DCPSO GCUK k-means

Iris 2.35±0.00 4.15±0.0 5.00±0.00 3.96±0.00

Wine 36.65±0.0 99.4±1.09 100.24±1.05 114.50±1.53

Breast Cancer 22.25±0.28 27.01±1.25 29.00±1.55 29.15±0.50

Vowel 418.75±3.10 453.58±6.61 476.42±6.92 473.72±4.25

Glass 92.55±0.19 102.1±0.68 98.21±0.08 105.36±0.54

VI. CONCLUSIONS

This paper has presented a new, Bacterial Evolutionary

Algorithm-based strategy for crisp clustering of real

world datasets. An important feature of the proposed

technique is that it is able to find the optimal number

of clusters automatically (that is, the number of clusters

does not have to be known in advance) even for very

high dimensional datasets where tracking of the

number of clusters may be well nigh impossible. The

proposed ACBEA algorithm has been shown to meet

or beat two other state-of-the-art clustering algorithms

in a statistically meaningful way over majority of the

benchmark datasets discussed here. This certainly does

not lead us to claim that ACBEA may outperform

DCPSO or GCUK over every dataset since it is

impossible to model all the possible complexities of a

real life data with the limited test-suit that we used for

testing the algorithms. In addition, the performance of

DCPSO and GCUK may also be enhanced with a

judicious parameter tuning, which renders itself to

further research with these algorithms. However, the

only conclusion we can draw at this point is that BEA

with the suggested modifications can serve as an

attractive alternative for dynamic clustering of

completely unknown datasets.

REFERENCES

1. R. O. Duda , P. E. Hart., Pattern Classification and Scene

Analysis. John Wiley and Sons, 1973.

2. A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering, a

review, ACM Computing Surveys, vol. 31, no.3, 264—

323, (1999).

3. R. Xu and D. Wunsch, Clustering, Wiley-IEEE book

series on Computational Intelligence, 2008.

4. E.W. Forgy, Cluster Analysis of Multivariate Data:

Efficiency versus Interpretability of classification,

Biometrics, 21, (1965) 768-9.

5. C. T. Zahn, Graph-theoretical methods for detecting and

describing gestalt clusters. IEEE Transactions on

Computers C-20 (1971), 68–86.

6. M.H. Law, M.A.T. Figueiredo, and A.K. Jain,

Simultaneous Feature Selection and Clustering Using

Mixture Models, IEEE Transactions Pattern Analysis and

Machine Intelligence, vol. 26, no. 9, pp. 1154-1166, Sept.

2004.

7. N. R. Pal, J. C. Bezdek, E. C.-K. Tsao, Generalized

clustering networks and Kohonen’s self-organizing

scheme, IEEE Trans. Neural Networks, vol 4, (1993) 549–

557.

8. S. Das, A. Abraham, and A. Konar, Metaheuristic

Clustering, Studies in Computational Intelligence,

Springer Verlag, Germany, 2009.

9. A. Abraham, S. Das, and S. Roy, Swarm Intelligence

Algorithms for Data Clustering, Soft Computing for

Knowledge Discovery and Data Mining, O. Maimon and

L. Rokach (Eds.), Springer Verlag, Germany, pp. 279-313,

2007.

10. N. E. Nawa, T. Furuhashi, Fuzzy System Parameters

Discovery by Bacterial Evolutionary Algorithm, in IEEE

Transactions on Fuzzy Systems, vol. 7, no. 5, pp.608-616,

October 1999.

11. J.H. Holland, Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Harbor

(1975).

12. E. Falkenauer, Genetic Algorithms and Grouping

Problems, John Wiley and Son, Chichester (1998).

13. C.H. Chou, M.C. Su, E. Lai, A new cluster validity

measure and its application to image compression. Pattern

Analysis and Applications 7(2), (2004) 205-220.

14. S. Bandyopadhyay, U. Maulik, Genetic clustering for

automatic evolution of clusters and application to image

classification, Pattern Recognition, 35, (2002) 1197-1208.

15. M. Omran, A. Salman and A. Engelbrecht. Dynamic

Clustering using Particle Swarm Optimization with

Application in Unsupervised Image Classification. Fifth

World Enformatika Conference (ICCI 2005), Prague,

Czech Republic, 2005.

16. C. Blake, E.Keough and C.J.Merz, UCI repository of

machine learning database (1998).

http://www.ics.uci.edu/~mlearn/MLrepository.html

17. J. MacQueen, Some methods for classification and

analysis of multivariate observations, Proceedings of the

Fifth Berkely Symposium on Mathematical Statistics and

Probability, 281-297 (1967).

18. F. Wilcoxon, Individual comparisons by ranking

methods. Biometrics, 1, 80-83, 1945.

19. S. García, D. Molina, M. Lozano, and F. Herrera, A

Study on the Use of Non-Parametric Tests for Analyzing

the Evolutionary Algorithms' Behaviour: A Case Study on

the CEC'2005 Special Session on Real Parameter

Optimization, Journal of Heuristics, DOI: 10.1007/s10732-

008-9080-4, in press (2008).

