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Abstract

The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly

chaotic behavior of stock markets could be well represented using flexible neural tree (FNT) ensemble technique. We considered the

Nasdaq-100 index of Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index. We analyzed 7-year Nasdaq-100 main index

values and 4-year NIFTY index values. This paper investigates the development of novel reliable and efficient techniques to model the

seemingly chaotic behavior of stock markets. The structure and parameters of FNT are optimized using genetic programming (GP) like

tree structure-based evolutionary algorithm and particle swarm optimization (PSO) algorithms, respectively. A good ensemble model is

formulated by the local weighted polynomial regression (LWPR). This paper investigates whether the proposed method can provide the

required level of performance, which is sufficiently good and robust so as to provide a reliable forecast model for stock market indices.

Experimental results show that the model considered could represent the stock indices behavior very accurately.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Prediction of stocks is generally believed to be a very
difficult task—it behaves like a random walk process and
time varying. The obvious complexity of the problem paves
the way for the importance of intelligent prediction
paradigms. During the last decade, stocks and futures
traders have come to rely upon various types of intelligent
systems to make trading decisions [1–4,10,15,22,14].
Several intelligent systems have in recent years been
developed for modeling expertise, decision support and
complicated automation tasks [15,17,23,28,18].

Leigh et al. [16] introduced a method for combining
template matching, using pattern recognition and a feed-
forward neural network, to forecast stock market activity.
The authors evaluated the effectiveness of the method for
forecasting increases in the New York Stock Exchange
Composite Index at a 5 trading day horizon. Results
e front matter r 2006 Elsevier B.V. All rights reserved.
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indicate that the technique is capable of returning results
that are superior to those attained by random choice.
Kim and Chun [13] explored a new architecture for

graded forecasting using an arrayed probabilistic network
(APN) and used a ‘‘mistake chart’’ to compare the
accuracy of learning systems against default performance
based on a constant prediction. Authors also evaluated
several backpropagation models against a recurrent
neural network (RNN) as well as probabilistic neural
networks, etc.
Tsaih et al. [26] investigated a hybrid AI (artificial

intelligence) approach to the implementation of trading
strategies in the S&P 500 stock index futures market. The
hybrid AI approach integrates the rule-based systems
technique and the neural networks technique to accurately
predict the direction of daily price changes in S&P 500
stock index futures. By highlighting the advantages and
overcoming the limitations of both the neural networks
technique and rule-based systems technique, the hybrid
approach can facilitate the development of more reliable
intelligent systems to model expert thinking and to support
the decision-making processes.
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Refenes et al. [24] proposed a simple modification to the
error backpropagation procedure which takes into account
gradually changing input–output relations. The procedure
is based on the principle of discounted least squares
whereby learning is biased towards more recent observa-
tions with long term effects experiencing exponential decay
through time. This is particularly important in systems in
which the structural relationship between input and
response vectors changes gradually over time but certain
elements of long term memory are still retained. The
procedure is implemented by a simple modification of the
least-squares cost function commonly used in error back-
propagation.

Van den Berg et al. [27] proposed a probabilistic fuzzy
systems to develop financial models where one can identify
different states of the market for modifying ones actions.
Authors developed a Takagi-Sugeno (TS) probabilistic
fuzzy systems that combine interpretability of fuzzy
systems with the statistical properties of probabilistic
systems. The methodology is applied to financial time
series analysis and demonstrated how a probabilistic TS
fuzzy system can be identified, assuming that a linguistic
term set is given.

From the perspective of the agent-based model of stock
markets, Chen and Liao [5] examined the possible
explanations for the presence of the causal relation between
stock returns and trading volume. Using the agent-based
approach, the authors found that the explanation for the
presence of the stock price volume relation may be more
fundamental. Conventional devices such as information
asymmetry, reaction asymmetry, noise traders or tax
motives are not explicitly required. Authors claimed that
a full understanding of the price volume relation cannot be
accomplished unless the feedback relation between indivi-
dual behavior at the bottom and aggregate phenomena at
the top is well understood.

In this paper, we analyzed the seemingly chaotic
behavior of two well-known stock indices namely the
Nasdaq-100 index of NasdaqSM [20] and the S&P CNX
NIFTY stock index [21]. The Nasdaq-100 index reflects
Nasdaq’s largest companies across major industry groups,
including computer hardware and software, telecommuni-
cations, retail/wholesale trade and biotechnology [20]. The
Nasdaq-100 index is a modified capitalization-weighted
index, which is designed to limit domination of the Index
by a few large stocks while generally retaining the
capitalization ranking of companies. Through an invest-
ment in the Nasdaq-100 index tracking stock, investors can
participate in the collective performance of many of the
Nasdaq stocks that are often in the news or have become
household names. Similarly, S&P CNX NIFTY is a well-
diversified 50 stock index accounting for 25 sectors of the
economy [21]. It is used for a variety of purposes such as
benchmarking fund portfolios, index-based derivatives and
index funds. The CNX Indices are computed using market
capitalization weighted method, wherein the level of the
Index reflects the total market value of all the stocks in the
index relative to a particular base period. The method also
takes into account constituent changes in the index and
importantly corporate actions such as stock splits, rights,
etc. without affecting the index value.
Our research is to investigate the performance analysis of

FNT [7,9,6] ensemble for modeling the Nasdaq-100 and the
NIFTY stock market indices. The hierarchical structure of
FNT is evolved using GP with specific instructions. The
parameters of the FNT model are optimized by PSO
algorithm [12]. The proposed method interleaves both
optimizations. Starting with random structures and corre-
sponding parameters, it first tries to improve the structure
and then as soon as an improved structure is found, it fine
tunes its parameters. It then goes back to improving the
structure again and, fine tunes the structure and rules’
parameters. This loop continues until a satisfactory
solution is found or a time limit is reached. The novelty
of this paper is in the usage of flexible neural trees ensemble
for selecting the important inputs and/or time delays and
for forecasting models.
We analyzed the Nasdaq-100 index value from 11

January 1995 to 11 January 2002 [20] and the NIFTY
index from 01 January 1998 to 03 December 2001 [21]. For
both the indices, we divided the entire data into almost two
equal parts. No special rules were used to select the training
set other than ensuring a reasonable representation of the
parameter space of the problem domain [3].
The rest of the paper is organized as follows. The flexible

neural tree model and its design method are given in
Section 2. Some simple and FNT ensemble approaches are
presented in Section 3. Some simulation results on stock
index modeling are shown in Section 4. Finally in
Section 5, we present some conclusions and future works.
2. The flexible neural tree model

The function set F and terminal instruction set T used
for generating a FNT model are described as
S ¼ F [ T ¼ fþ2;þ3; . . . ;þNg [ fx1; . . . ; xng, where þiði ¼

2; 3; . . . ;NÞ denote non-leaf nodes’ instructions and taking i

arguments. x1;x2; . . . ;xn are leaf nodes’ instructions and
taking no other arguments. The output of a non-leaf node
is calculated as a flexible neuron model (see Fig. 1). From
this point of view, the instruction þi is also called a flexible
neuron operator with i inputs.
In the creation process of neural tree, if a nonterminal

instruction, i.e., þiði ¼ 2; 3; 4; . . . ;NÞ is selected, i real
values are randomly generated and used for representing
the connection strength between the node þi and its
children. In addition, two adjustable parameters ai and bi

are randomly created as flexible activation function
parameters. For developing the FNT, the following flexible
activation function is used,

f ðai; bi;xÞ ¼ e�ððx�aiÞ=biÞ
2

. (1)
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT with function instruction set F ¼ fþ2;þ3;þ4;þ5;þ6g, and terminal

instruction set T ¼ fx1; x2;x3g (right).
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The total excitation of þn is netn ¼
Pn

j¼1 wj � xj, where
xjðj ¼ 1; 2; . . . ; nÞ are the inputs to node þn. The output of
the node þn is then calculated by,

outn ¼ f ðan; bn; netnÞ ¼ e�ððnetn�anÞ=bnÞ
2

. (2)

The overall output of flexible neural tree can be computed
from left to right by depth-first method, recursively.

2.1. Tree structure optimization

Finding an optimal or near-optimal neural tree is
formulated as a product of evolution. In our previous
work, the probabilistic incremental program evolution
(PIPE) and ant programming (AP) algorithm have been
employed to find a near-optimal neural tree [7,8]. In this
study, the crossover and selection operators used are same
as those of standard GP. A number of neural tree mutation
operators are developed as follows:
(1)
 Changing one terminal node: randomly select one
terminal node in the neural tree and replace it with
another terminal node.
(2)
 Changing all the terminal nodes: select each and every
terminal node in the neural tree and replace it with
another terminal node.
(3)
 Growing: select a random leaf in hidden layer of the
neural tree and replace it with a newly generated
subtree.
(4)
 Pruning: randomly select a function node in the neural
tree and replace it with a terminal node.
2.2. Parameter optimization with PSO

The particle swarm optimization (PSO) conducts
searches using a population of particles which correspond
to individuals in evolutionary algorithm (EA). A popula-
tion of particles is randomly generated initially. Each
particle represents a potential solution and has a position
represented by a position vector xi. A swarm of particles
moves through the problem space, with the moving
velocity of each particle represented by a velocity vector
vi. At each time step, a function f i representing a quality
measure is calculated by using xi as input. Each particle
keeps track of its own best position, which is associated
with the best fitness it has achieved so far in a vector pi.
Furthermore, the best position among all the particles
obtained so far in the population is kept track of as pg. In
addition to this global version, another version of PSO
keeps track of the best position among all the topological
neighbors of a particle. At each time step t, by using the
individual best position, pi, and the global best position,
pgðtÞ, a new velocity for particle i is updated by

viðtþ 1Þ ¼ viðtÞ þ c1f1ðpiðtÞ � xiðtÞÞ þ c2f2ðpgðtÞ � xiðtÞÞ,

(3)

where c1 and c2 are positive constant and f1 and f2 are
uniformly distributed random number in [0,1]. The term vi
is limited to the range of �vmax. If the velocity violates this
limit, it is set to its proper limit. Changing velocity this way
enables the particle i to search around its individual best
position, pi, and global best position, pg. Based on the
updated velocities, each particle changes its position
according to the following equation:

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ. (4)

2.3. Feature/input selection with FNT

It is often a difficult task to select important variables for
a forecasting or classification problem, especially when the
feature space is large. A fully connected NN classifier
usually cannot do this. In the perspective of FNT frame-
work, the nature of model construction procedure allows
the FNT to identify important input features in building a
forecasting model that is computationally efficient and
effective. The mechanisms of input selection in the FNT
constructing procedure are as follows. (1) Initially the input
variables are selected to formulate the FNT model with
same probabilities; (2) The variables which have more
contribution to the objective function will be enhanced and
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have high opportunity to survive in the next generation by
a evolutionary procedure; (3) The evolutionary operators
i.e., crossover and mutation, provide a input selection
method by which the FNT should select appropriate
variables automatically.

2.4. Procedure of the general learning algorithm

The general learning procedure for constructing the
FNT model can be described as follows:
(1)
 Create an initial population randomly (FNT trees and
its corresponding parameters);
(2)
 Structure optimization is achieved by the neural tree
variation operators as described in Section 2.
(3)
 If a better structure is found, then go to step (4),
otherwise go to step (2);
(4)
 Parameter optimization is achieved by the PSO
algorithm as described in Section 2. In this stage, the
architecture of FNT model is fixed, and it is the best
tree developed during the end of run of the structure
search. The parameters (weights and flexible activation
function parameters) encoded in the best tree formulate
a particle.
(5)
 If the maximum number of local search is reached, or
no better parameter vector is found for a significantly
long time then go to step (6); otherwise go to step (4);
(6)
 If satisfactory solution is found, then the algorithm is
stopped; otherwise go to step (2).
3. The FNT ensemble

For most regression and classification problems, com-
bining the outputs of several predictors improves on the
performance of a single generic one [25]. Formal support to
this property is provided by the so-called bias/variance
dilemma [11], based on a suitable decomposition of the
prediction error. According to these ideas, good ensemble
members must be both accurate and diverse, which poses
the problem of generating a set of predictors with reason-
ably good individual performances and independently
distributed predictions for the test points. Diverse indivi-
dual predictors can be obtained in several ways. These
include: (i) using different algorithms to learn from the
data (classification and regression trees, artificial neural
networks (ANNs), support vector machines, etc.), (ii)
changing the internal structure of a given algorithm (for
instance, number of nodes/depth in trees or architecture in
neural networks), and (iii) learning from different ade-
quately-chosen subsets of the data set. The probability of
success in strategy (iii), the most frequently used, is directly
tied to the instability of the learning algorithm [3]. That is,
the method must be very sensitive to small changes in the
structure of the data and/or in the parameters defining the
learning process. Again, classical examples in this sense are
classification and regression trees and ANNs. In particular,
in the case of ANNs the instability comes naturally from
the inherent data and training process randomness, and
also from the intrinsic non-identifiability of the model. In
what follows, three ensemble methods are employed for the
stock index forecasting problems.

3.1. The basic ensemble method

A simple approach to combining network outputs is to
simply average them together. The basic ensemble method
(BEM) output is defined:

f BEM ¼
1

n

Xn

i¼1

f iðxÞ. (5)

This approach by itself can lead to improved performance,
but does not take into account the fact that some FNTs
may be more accurate than others. It has the advantage
that it is easy to understand and implement and can be
shown not to increase the expected error.

3.2. The generalized ensemble method

A generalization to the BEM method is to find weights
for each output that minimize the positive and negative
classification rates of the ensemble. The general ensemble
method (GEM) is defined:

f BEM ¼
Xn

i¼1

aif iðxÞ, (6)

where the ai’s are chosen to minimize the root mean square
error between the FNT outputs and the desired values. For
comparison purpose, the optimal weights of the ensemble
predictor are optimized by using PSO algorithm.

3.3. The LWPR method

To investigate more efficient ensemble method, a LWPR
approximation approach is employed in this work [19]. In
this framework, the final output of FNT ensemble is
approximated by a local polynomial model, i.e.,

f LWPR ¼
XM
i¼1

bitiðxÞ, (7)

where ti is a function that produces the ith term in the
polynomial. For example, with two inputs and a quadratic
local model we would have t1ðxÞ ¼ 1, t2ðxÞ ¼ x1,
t3ðxÞ ¼ x2, t4ðxÞ ¼ x2

1, t5ðxÞ ¼ x1x2, t6ðxÞ ¼ x2
2. Eq. (5) can

be written more compactly as

f LWPR ¼ bTtðxÞ, (8)

where tðxÞ is the vector of polynomial terms of the input x

and b is the vector of weight terms. The weight of the ith
datapoint is computed as a decaying function of Euclidean
distance between xk and xquery. b is chosen to minimize

XN

i¼1

o2
i ðf LWPR � bTtðxÞÞ, (9)
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where oi is a Gaussian weight function with kernel width
K :

oi ¼ expð�Distance2ðxi; xqueryÞ=2K2Þ. (10)

For this problem, an algorithm based on a multiresolution
search of a quickly constructible augmented kdtree without
needing to rebuild the tree, has been proposed for fast
predictions with arbitrary local weighting functions [19].
4. Experiments

We considered 7-year stock data for the Nasdaq-100
Index and 4-year for the NIFTY index. Our target is to
develop efficient forecast models that could predict the
index value of the following trade day based on the
opening, closing and maximum values of the same on a
given day. The assessment of the prediction performance of
the different ensemble paradigms were done by quantifying
Table 1

Empirical comparison of RMSE results for four learning methods

Best-FNT BEM GEM LWPR

Nasdaq-100 0.01854 0.01824 0.01635 4:41� 10�5

NIFTY 0.01315 0.01258 0.01222 1:96� 10�7

Table 2

Statistical analysis of four learning methods (test data)

Best-FNT BEM GEM LWPR

Nasdaq-100

CC 0.997542 0.997610 0.997757 0.999999

MAP 98.1298 98.3320 97.3347 0.4709

MAPE 6.1090 6.3370 5.7830 0.0040

NIFTY

CC 0.996908 0.997001 0.997109 0.999999

MAP 28.0064 34.3687 26.8188 7:65� 10�4

MAPE 3.2049 2.9303 2.6570 1:92� 10�5
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Fig. 2. Test results showing the performance of the diff
the prediction obtained on an independent data set. The
root mean squared error (RMSE), maximum absolute
percentage error (MAP) and mean absolute percentage
error (MAPE) and correlation coefficient (CC) were used
to study the performance of the trained forecasting model
for the test data. MAP is defined as follows:

MAP ¼ max
jPactual;i � Ppredicted;ij

Ppredicted;i
� 100

� �
, (11)

where Pactual;i is the actual index value on day i and
Ppredicted;i is the forecast value of the index on that day.
Similarly MAPE is given as

MAPE ¼
1

N

XN

i¼1

jPactual;i � Ppredicted;ij

Ppredicted;i

� �
� 100, (12)

where N represents the total number of days.
We used instruction set I ¼ fþ2;þ3; . . . ;þ6; x0; x1;x2g

for modeling the Nasdaq-100 index and instruction set I ¼

fþ2;þ3; . . . ;þ8; x0; x1; x2;x3;x4g for modeling the NIFTY
index. We have conducted 10 FNT models for predicting
the Nasdaq-100 index and the NIFTY index, respectively.
And then three ensemble methods discussed in Section 3
are employed to predict the both index.
Table 1 summarizes the test results achieved for the two

stock indices using the four different approaches. Perfor-
mance analysis of the trained forecasting models for the
test data was shown in Table 2. Figs. 2 and 3 depict the test
results for the one day ahead prediction of the Nasdaq-100
index and the NIFTY index, respectively.
5. Conclusions

In this paper, we have demonstrated how the chaotic
behavior of stock indices could be well represented by FNT
ensemble learning paradigm. Empirical results on the two
data sets using FNT ensemble models clearly reveal the
efficiency of the proposed techniques. In terms of RMSE
values, for the Nasdaq-100 index and the NIFTY index,
250 300 350 400 450

Desired value
Best-FNT
BEM
GEM
LWPR

ime

erent methods for modeling the Nasdaq-100 index.
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Fig. 3. Test results showing the performance of the different methods for modeling the NIFTY index.

Y. Chen et al. / Neurocomputing 70 (2007) 697–703702
LWPR performed marginally better than other models.
For both indices (test data), LWPR also has the highest
correlation coefficient and the lowest value of MAPE and
MAP values. A low MAP value is a crucial indicator for
evaluating the stability of a market under unforeseen
fluctuations. In the present example, the predictability
assures the fact that the decrease in trade off is only a
temporary cyclic variation that is perfectly under control.

Our research was to predict the share price for the
following trade day based on the opening, closing and
maximum values of the same on a given day. The
experimental results indicate that the most prominent
parameters that affect share prices are their immediate
opening and closing values. The fluctuations in the share
market are chaotic in the sense that they heavily depend on
the values of their immediate forerunning fluctuations.
Long-term trends exist, but are slow variations and this
information is useful for long-term investment strategies.

Our study focus on short term, on floor trades, in which
the risk is higher. However, the results of our study show
that even in the seemingly random fluctuations, there is an
underlying deterministic feature that is directly enciphered
in the opening, closing and maximum values of the index of
any day making predictability possible. Empirical results
also show that LWPR is a distinguished candidate for the
FNT ensemble or neural networks ensemble.

Acknowledgments

This research was partially supported by the Natural
Science Foundation of China under grant number
60573065, and The Provincial Science and Technology
Development Program of Shandong under Grant number
SDSP2004-0720-03.

References

[1] A. Abraham, B. Nath, P.K. Mahanti, in: V.N. Alexandrov, et al.

(Eds.), Hybrid Intelligent Systems for Stock Market Analysis,
Computational Science, Springer-Verlag, Germany, USA, 2001,

pp. 337–345.

[2] A. Abraham, N.S. Philip, B. Nath, P. Saratchandran, Performance

analysis of connectionist paradigms for modeling chaotic behavior of

stock indices, Second International Workshop on Intelligent Systems

Design and Applications, Computational Intelligence and Applica-

tions, Dynamic Publishers Inc., USA, 2002, pp. 181–186.

[3] A. Abraham, N.S. Philip, P. Saratchandran, Modeling chaotic

behavior of stock indices using intelligent paradigms, Int. J. Neural

Parallel Sci. Comput. 11 (1–2) (2003) 143–160.

[4] W.S. Chan, W.N. Liu, Diagnosing shocks in stock markets of

southeast Asia, Australia, and New Zealand, Math. Comput.

Simulation 59 (1–3) (2002) 223–232.

[5] S.-H. Chen, C.-C. Liao, Agent-based computational modeling of the

stock price volume relation, Inf. Sci. 170 (1) (2005) 75–100.

[6] Y. Chen, A. Abraham, Feature selection and intrusion detection

using hybrid flexible neural tree, Lect. Notes Comput. Sci. 3498

(2005) 439–444.

[7] Y. Chen, B. Yang, J. Dong, Nonlinear system modeling via optimal

design of neural trees, Int. J. Neural Syst. 14 (2) (2004) 125–137.

[8] Y. Chen, B. Yang, J. Dong, Evolving flexible neural networks using

ant programming and PSO algorithm, International Symposium on

Neural Networks (ISNN’04), Lecture Notes on Computer Science,

vol. 3173, 2004, pp. 211–216.

[9] Y. Chen, B. Yang, J. Dong, A. Abraham, Time-series forecasting

using flexible neural tree model, Inf. Sci. 174 (3/4) (2005) 219–235.

[10] E.S. Francis Tay, L.J. Cao, Modified support vector machines in

financial time series forecasting, Neurocomputing 48 (1–4) (2002)

847–861.

[11] S. Geman, E. Bienenstock, R. Doursat, Neural networks and the

bias/variance dilemma, Neural Comput. 4 (1992) 1–58.

[12] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in:

Proceedings of IEEE International Conference on Neural Networks,

1995, pp. 1942–1948.

[13] S.H. Kim, S.H. Chun, Graded forecasting using an array of bipolar

predictions: application of probabilistic neural networks to a stock

market index, Int. J. Forecast. 14 (3) (1998) 323–337.

[14] K.J. Kim, I. Han, Genetic algorithms approach to feature discretiza-

tion in artificial neural networks for the prediction of stock price

index, Expert Syst. Appl. 19 (2) (2000) 125–132.

[15] W. Leigh, N. Modani, S. Purvis, T. Roberts, Stock market trading

rule discovery using technical charting heuristics, Expert Syst. Appl.

23 (2) (2002) 155–159.

[16] W. Leigh, M. Paz, R. Purvis, An analysis of a hybrid neural network

and pattern recognition technique for predicting short-term increases

in the NYSE composite index, Omega 30 (2) (2002) 69–76.



ARTICLE IN PRESS
Y. Chen et al. / Neurocomputing 70 (2007) 697–703 703
[17] W. Leigh, R. Purvis, J.M. Ragusa, Forecasting the NYSE composite

index with technical analysis, pattern recognizer, neural network and

genetic algorithm: a case study in romantic decision support,

Decision Support Syst. 32 (4) (2002) 361–377.

[18] I. Maqsood, M.R. Khan, A. Araham, Neural network ensemble

method for weather forecasting, Neural Comput. Appl. 13 (2) (2004)

112–122.

[19] A. Moore, J. Schneider, K. Deng, Efficient locally weighted

polynomial regression predictions, in: Proceedings of the 14th

International Conference on Machine Learning, 1997, pp. 236–244.

[20] Nasdaq Stock MarketSM, hhttp://www.nasdaq.comi.

[21] National Stock Exchange of India Limited, hhttp://www.nse-

india.comi.

[22] K.J. Oh, K.J. Kim, Analyzing stock market tick data using piecewise

nonlinear model, Expert Syst. Appl. 22 (3) (2002) 249–255.

[23] T.S. Quah, B. Srinivasan, Improving returns on stock investment

through neural network selection, Expert Syst. Appl. 17 (4) (1999)

295–301.

[24] A.N. Refenes, Y. Bentz, D.W. Bunn, A.N. Burgess, A.D. Zapranis,

Financial time series modelling with discounted least squares back-

propagation, Neurocomputing 14 (2) (1997) 123–138.

[25] A.J.C. Sharkey (Ed.), Combining Artificial Neural Nets, Springer,

London, 1999.

[26] R. Tsaih, Y. Hsu, C.C. Lai, Forecasting S&P 500 stock index futures

with a hybrid AI system, Decision Support Syst. 23 (2) (1998)

161–174.

[27] J. Van den Berg, U. Kaymak, W.-M. Van den Bergh, Financial

markets analysis by using a probabilistic fuzzy modelling approach,

Int. J. Approximate Reasoning 35 (3) (2004) 291–305.

[28] Y.F. Wang, Mining stock price using fuzzy rough set system, Expert

Syst. Appl. 24 (1) (2002) 13–23.

Yuehui Chen was born in 1964 in Shandong

Province of China. He received his B.Sc. degree in

mathematics/automatics from the Shandong

University of China in 1985, and Master and

Ph.D. degree in electrical engineering from the

Kumamoto University of Japan in 1999 and

2001. During 2001C2003, he had worked as the

Senior Researcher of the Memory-Tech Corpora-

tion at Tokyo. Since 2003 he has been a member

at the Faculty of Electrical Engineering in Jinan
University, where he is currently head of the

Laboratory of Computational Intelligence. His

research interests include Evolutionary Computation, Neural Networks,

Fuzzy Logic Systems, Hybrid Computational Intelligence and their
applications in time-series prediction, system identification, intelligent

control, intrusion detection systems, web intelligence and bioinformatics.

He is the author and co-author of more than 70 technique papers.

Professor Yuehui Chen is a member of IEEE, the IEEE Systems, Man

and Cybernetics Society and the Computational Intelligence Society,

a member of Young Researchers Committee of the World Federation

on Soft Computing, and a member of CCF Young Computer Science

and Engineering Forum of China. More information at: http://cilab.

ujn.edu.cn

Bo Yang is a professor and vice-president of Jinan

University, Jinan, China. He is the Director of the

Provincial Key Laboratory of Information and

Control Engineering, and also acts as the Associ-

ate Director of Shandong Computer Federation,

and Member of the Technical Committee of

Intelligent Control of Chinese Association of

Automation. His main research interests include

computer networks, artificial intelligence, machine

learning, knowledge discovery, and data mining.
He has published numerous papers and gotten

some of important scientific awards in this area.

Ajith Abraham currently works as a Professor

under the South Korean Government’s Institute

of Information Technology Assessment (IITA)

Professorship program at Chung-Ang University,

Korea. He is also a visiting researcher of Rovira i

Virgili University, Spain and an Adjunct Profes-

sor of Jinan University, China and Dalian

Maritime University, China. His primary re-

search interests are in computational intelligence

with a focus on using evolutionary computation
techniques for designing intelligent paradigms.

Application areas include Web services, informa-

tion security, Web intelligence, financial modeling, multi-criteria decision-

making, data mining, etc. He has authored/co-authored over 200 research

publications in peer reviewed reputed journals, book chapters and

conference proceedings of which three have won ‘‘best paper’’ awards.

He is serving the Editorial board of over a dozen International Journals

and has also guest edited 15 special issues for reputed International

Journals. Since 2001, he is actively involved in the Hybrid Intelligent

Systems (HIS) and the Intelligent Systems Design and Applications

(ISDA) series of annual International conferences. He received PhD

degree from Monash University, Australia. More information at: http://

www.softcomputing.net

http://www.nasdaq.com
http://www.nse-india.com
http://www.nse-india.com
http://cilab.ujn.edu.cn
http://cilab.ujn.edu.cn
http://www.softcomputing.net
http://www.softcomputing.net

	Flexible neural trees ensemble for stock index modeling
	Introduction
	The flexible neural tree model
	Tree structure optimization
	Parameter optimization with PSO
	Feature/input selection with FNT
	Procedure of the general learning algorithm

	The FNT ensemble
	The basic ensemble method
	The generalized ensemble method
	The LWPR method

	Experiments
	Conclusions
	Acknowledgments
	References


