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Data gravitation based classification (DGC) is a novel data classification technique based on
the concept of data gravitation. The basic principle of DGC algorithm is to classify data sam-
ples by comparing the data gravitation between the different data classes. In the DGC
model, a kind of ‘‘force” called data gravitation between two data samples is computed.
Data from the same class are combined as a result of gravitation. On the other hand, data
gravitation between different data classes can be compared. A larger gravitation from a
class means the data sample belongs to a particular class. One outstanding advantage of
the DGC, in comparison with other classification algorithms is its simple classification prin-
ciple with high performance. This makes the DGC algorithm much easier to be imple-
mented. Feature selection plays an important role in classification problems and a novel
feature selection algorithm is investigated based on the idea of DGC and weighted features.
The proposed method is validated by using 12 well-known classification data sets from UCI
machine learning repository. Experimental results illustrate that the proposed method is
very efficient for data classification and feature selection.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Classification is an important problem for machine learning and data mining researchers. The basic idea of a classification
algorithm is to construct a classifier according to a given training set. Once the classifier is constructed, it can predict the
class value(s) of unknown test data sample(s). For the training data set, in most classification problems, the class value of
each sample should be known and hence most classification problems belong to the category of supervised machine learn-
ing. Many techniques have been applied for classification, including decision trees [20,7], neural network (NN) [13], support
vector machine (SVM) [2,24], fuzzy inference systems [27], rough set [17] and so on. Among these techniques, decision tree
is simple and easy to be comprehended. Neural networks have proven to be an efficient approach for many classification
tasks, however, its training efficiency is usually a problem. SVM is a relatively new machine learning method based on
the statistical learning theory and structural risk minimization (SRM) principle. SVM is gaining popularity due to many
attractive features, and promising empirical performance. SVM is based on the hypothesis that the training samples obey
a certain distribution, which restricts its application scope. Rough set [17] theory has also been applied to classification in
recent years especially for feature selection [10] or as a hybridization tool with other classification methods [14,15,19,9].

Shi et al. [22] presented a novel data preprocessing technique called shrinking. Shrinking technique optimizes the inner
structure of data inspired by the Newton’s universal law of gravitation. During the preprocessing stage, a shrinking-based
approach for multi-dimensional data analysis is used. The main idea of this approach is that data points move along the
direction of the density gradient simulating the Newton’s universal law of gravitation, leading to clusters, which are
condensed and widely-separated. Using the shrinking approach, authors [21] also proposed a dimension deduction approach
. All rights reserved.
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for multi-dimensional data analysis. Indulska and Orlowska [12] proposed a spatial clustering algorithm called GRAVIclust.
The proposed algorithm uses a heuristic to pick the initial cluster centers and utilizes center of cluster gravity calculations in
order to arrive at the optimal clustering solution. Although both of them are more focused on clustering problems, both
methods had been inspired by the concepts of physical gravitation. Webster et al. [25] applied the natural principles of grav-
itation and developed two local search optimization algorithms called GLSA1 and GLSA2.

Data gravitation based classification method is a novel classification method developed by simulating the gravitation and
the law of gravitation in the physical world [18,26]. The main ideas of the DGC method are (1) there exists a kind of ‘‘force”
named data gravitation between any two data samples; (2) computational data gravitation obey the law of gravitation in the
physical world; (3) the class value of a test sample is determined by comparing the gravitation values of different data clas-
ses. This paper also propose a feature selection algorithm for DGC by weighted features. Weights are used to describe the
importance of features in the DGC model, and the weights are optimized by a random iterative algorithm named tentative
random feature selection (TRFS). These additional strategies make the DGC approach more attractive and effective. The pro-
posed method is validated using 12 well-known classification data sets. Experimental results illustrate that the proposed
method is efficient as a data mining tool for classification problems.

This paper is organized as follows: Section 2 introduces the theory of data gravitation, including concepts, lemmas and
the law of data gravitation. The principle of classification and other important principles of DGC are introduced in Section
3. In Section 4, a novel feature selection algorithm for DGC is proposed. Experiment results and analysis are reported in Sec-
tion 5. Finally, we provide some conclusions in Section 6.
2. Theory of data gravitation

2.1. Gravitation and the universal law of gravitation

As we know, there exists a kind of force between any two objects in the universe and this force is called gravitation in
Physics. Gravitation obey the universal law of gravitation. In 1687, Newton published an important paper in which he illus-
trated the universal law of gravitation for the first time. The law indicates that the strength of gravitation between two ob-
jects is in direct ratio to the product of the masses of the two objects, but in inverse ratio to the square of distance between
them. The law can be described as follows:
F ¼ G
m1m2

r2 : ð1Þ
Since force has direction, the precise description of the law takes the following vector form:
F ¼ G
m1m2r

jrj3
; ð2Þ
where F is the gravitation between two objects; G the constant of universal gravitation; m1 the mass of object 1; m2 the mass
of object 2; r the distance between the two objects; F the vector form of F and r is the vector form of r.

2.2. Data gravitation

Many classification and clustering methods are proposed on the basis of the similarity between data samples. The sim-
ilarity of two single data samples is only affected by the Euclidian distance between them. When we study the relationship of
a single data sample and a group of data samples with certain properties, e.g. a data cluster or a data class, two primary fac-
tors are often accounted, one is the distance, the other is the number of data samples in the group and its density. The shorter
the distance is, the more the single data sample is similar to the group; the more number of samples the group contains, also
the more the single data sample is similar to the group. This relationship is illustrated in Fig. 1. By drawing an analogy with
gravitation in physics, we introduce the concept of gravitation and the Law of Gravitation in physics for a data classification
problem. We extract two essential features of data similarity: distance and data ‘‘mass”. The similarity between data is trea-
ted as a new concept called data gravitation.

Definition 1 (Data particle). Data particle is a kind of data unit that also has ‘‘data mass”. Data particle is made up of a group
of data elements in data space. These data elements have a certain relationship. Usually this relationship refers to the
geometrical neighborhood of these data elements. That is to say the distances between any two data elements in a data
particle must be shorter than a predefined value. Data particle has two basic properties: data mass and data centroid.

Definition 2 (Data mass). The mass of a data particle is the number of data elements in the data particle.

Definition 3 (Data centroid). Suppose x1;x2; . . . ;xmðxi ¼ hxi1; xi2; . . . ; xini; i ¼ 1;2; . . . ;mÞ are a group of data elements in a
n-dimensional data space S, P is a data article built up by x1;x2; . . . ; xm. Therefore, the data centroid of P, x0 ¼ hx01; x02; . . . ; x0ni
is the geometrical center of x1;x2; . . . ;xm described as follows:
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Fig. 1. The relationship of distance, data mass and data similarity. In (a) P belongs to class A because A contains more samples than B. In (b) P belongs to
class B because the distance between P and B is shorter than that of A.
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x0j ¼
Pm

i¼1xij

m
; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n: ð3Þ
Since data particle has data mass and data centroid, data particle is described by a pair expression hm;xi. Where m is the data
mass of the data particle and x is the data centroid. After the class information (feature y) is taken into count, data particle is
described as a triple expression hm;x; yi.

Definition 4 (Atomic data particle). An atomic data particle is a data particle containing only one data element. The data
mass of an atomic data particle is 1.

Definition 5 (Data gravitation). Data gravitation is defined as the similarity between data particles and is a kind of scalar.
This is an important factor different from the physical force. For the same data particle, gravitation from different data clas-
ses can be compared.

On the other hand, data gravitation from the same class obey the superposition principle.

Lemma 1 (Superposition principle). Suppose p1; p2; . . . ; pm are m data particles in a data space, and they belong to the same
data class. The gravitation they act on another data particle are F1; F2; . . . ; Fm, and then the composition of gravitation is given by:
F ¼
Xm

i¼1

Fi: ð4Þ
Definition 6 (Data gravitation field). Data particles act on each other by data gravitation, and form a field that congests the
whole data space. Data particles in different data classes produce different data gravitation fields, and these fields can be
compared.
2.3. The law of data gravitation

The strength of gravitation between two data particles in data space is the direct ratio to the product of data mass of the
two data particles, and inverse ratio to the square of distance between them. The law is described as follows:
F ¼ m1m2

r2 ; ð5Þ
where F is the gravitation between two data particles; m1 the data mass of data particle 1; m2 the data mass of data particle
2; and r is the Euclidian distance between the two data particles in data space.

3. Classification based on data gravitation

3.1. Principle of classification

Lemma 2. Suppose c1 and c2 are two data classes in a training data set. For a given test data element P (an atomic data particle),
the gravitation that data particles in c1 acts on P is F1, and F2 is the gravitation that data particles in c2 acts on P. If F1 > F2, then
the degree P belongs to c1 is stronger than c2.

Fig. 2 describes the principle of classification.
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Fig. 2. Classification based on data gravitation. The strength of gravitation determines which class a test data element belongs to. The black dots denote
data particles in class c1. The circles denote data particles in class c2.
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Suppose T ¼ fhx1; y1i; hx2; y2i; . . . ; hxl; ylig is a training set in n-dimensional data space, y 2 fc1; c2; . . . ; ckg, ci represents
data class i, k is the number of data classes, l is the number of training samples. A new set of training data particles is created
from the original training set. The new training data particle set is T 0 ¼ fhm1;x01; y1i; hm2;x02; y2i; . . . ; hml;x0l; ylig, where l0 is the
number of data particles, l0 6 l, x0i is the centroid of data particle i, mi is the data mass of data particle i.

Once the training data particle set is constructed, the strength of data gravitation field on any position in the data space
can be calculated. When a test data element is given, which data class it belongs to can be determined by the field strength of
different data classes.

Suppose c1; c2; . . . ; ck are the data classes in the training set, they have l1; l2; . . . ; lk samples (data elements), the training
data particle set is created from training set comprising of l01 þ l02 þ . . .þ l0k data particles, where l0i is the number of data par-
ticles which belong to data class i. A given test data can be treated as an atomic data particle P, the centroid is its position x.
The gravitation that data class i acts on it is given by:
Fi ¼
Xl0i

j¼1

mij

jxij � xj2
; ð6Þ
where mij is the data mass of data particle j in data class i and xij is its centroid.
If Fi0 ¼ maxfF1; F2; . . . ; Fkg, then according to lemma 2, the test data element belongs to data class i0.
3.2. Principles to create data particle

The simplest method to create data particle is to treat a single data element as one data particle. In other words, a training
sample in the training data set can be used to create a data particle. According to how many data elements the original train-
ing data set possess, the required number of data particles are to be created. This method is simple and easy to realize. An-
other advantage of this method is that the field strength of data gravitation calculated by this method can achieve the
highest accuracy. The weakness of the method is also obvious: The calculation might grow up tremendously with the expan-
sion of the training data set and the efficiency of classification might be compromised.

Another method to create data particle is by using the maximum distance principle (MDP).

Algorithm 1

(1) For a given distance threshold e and a training sample x0, if there are some other training samples x1;x2; . . . ;xp belong-
ing to the same data class with x0, they make that j xi � x0 j< e; i ¼ 1;2; . . . ; p. Then x0;x1;x2; . . . ;xp can be combined
into a single data particle hm0;x00i, where x00 is centroid of the data particle, m0 ¼ pþ 1 is its data mass.

(2) Repeat the step (1) above with the newly created data particle ðx00;m0Þ to find other training samples that match the
condition. If found, combine them with the data particle, otherwise, this data particle is created finally.

Fig. 3 illustrates the main flowchart of MDP. The advantage of MDP method is that it can combine data elements that have
similar influence on data gravitation field and hence the efficiency of classification can be enhanced remarkably. However,
this method reduces the accuracy of the calculation of the strength of data gravitation field, especially on the area nearby the
data particle centroid.



Fig. 3. Flowchart of maximum distance principle.
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4. Feature selection

In real classification problems, a feature set must be defined to describe the target problem and the importance of each
feature is often unknown. For many classification problems, irrelevant or redundant features decrease not only the classifi-
cation efficiency, but also the accuracy [1]. So, feature selection is necessary for most classification problems. In fact, feature
selection can be performed without reducing the accuracy of classification remarkably [3,6]. Choosing pivotal features can
not only reduce the complexity of the target problem, but also improves the performance of algorithms in many cases [4].

4.1. Weighting to features

Most feature selection methods define feature selection using a binary description of selected/not-selected. That means a
feature is useful or useless to the target problem. In many real world problems, the degree of importance of features is not
identical and hence the binary description of feature selection cannot describe the importance of features accurately.

In this paper, we propose the concept of weighted features, and by weighting every feature of the target classification
problem, the degree of importance of every feature can be obtained by its weight.

Suppose there are n features in the target problem feature set, every feature has a weight value, so all feature weights
form a n-expression: hw1;w2; . . . ;wni. We describe it as feature weight vector w.

4.2. Tentative random feature selection algorithm

Since weight is a good descriptor for feature selection, deciding the weight of a certain feature is the major challenge.
There are no general principles to calculate the weights of features. This paper propose a tentative random feature selection



Fig. 4. Tuning of feature weights.
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(TRFS) algorithm to calculate the weights of features by simulating the mutation operation in a genetic algorithm (GA). The
main algorithm is as follows:

(1) Initialize the weight of each feature by a zero value.
(2) The weights of features are then optimized by an iterative procedure.
(3) The iteration of the weights of features is similar to mutation operation of GA.

First, randomly select a feature and add a small disturbance to its weight, then a new feature weight vector w0 is obtained.
We use training data set cross validation method to evaluate w, if the result is better than the cross validation result of w,
then w0 is observed and w is replaced by w0, otherwise w0 is discarded.
Fig. 5. Flowchart of tentative random feature selection.
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Suppose the small disturbance is e, w ¼ hw1;w2; . . . ;wni, and the selected feature is i, then w0 ¼ hw1;w2; . . . ;wiþ e; . . . ;wni,
�1 < e < 1. The tuning of weights is illustrated in Fig. 4 and the flowchart of tentative random feature selection algorithm is
depicted in Fig. 5.

Each time the feature weight vector is updated, it should be evaluated. This paper uses cross validation of training data set
to evaluate the newly obtained feature weight vector. In this method, the training set T is partitioned to two subsets Ta and
Tb uniformly, the data elements in Ta and Tb are all selected from T randomly, but the ratio of every class in Ta and Tb should
be kept identical to original training set T. According to DGC model, two data particle sets T 0a and T 0b are built according to Ta

and Tb. We use T 0a as the training data particle set, Tb as testing set and classification accuracy is calculated using the DGC
model, then T 0b as training data particle set, Ta as testing set and the classification accuracy is again calculated. By this meth-
od, the performance of the feature weight vector w can be evaluated. Suppose the feature set is F ¼ hf1; f2; . . . ; fni, the feature
weight vector is w ¼ hw1;w2; . . . ;wni, the training accuracy is defined as f and f0 is target accuracy. Then the algorithm is
described as follows:

Algorithm 2 (TRFS)

1: Split the training data set into two subsets Ta and Tb.
2: w ¼ 0; f ¼ 1:0
3: for i ¼ 0 to i ¼ imax or f < f0

4: select a feature fi randomly
5: wi ¼ wi þ e
6: evaluate w0 using cross validation method on Ta and Tb, the result is f 0

7: if f 0 < f
8: w ¼ w0; f ¼ f 0

9: end if
10: end for
4.3. Tuning of selection probability

If the features to be tuned were selected in a purely random way, then the probability that every feature were selected
should be identical. That means the irrelevant or redundant features can gain the same chance of being selected as one of the
pivotal features. Obviously this is not a good idea, since it is not biased in selecting the most contributing features. It is nec-
essary to find an effective strategy to control the selection procedure.

In order to control the selection procedure, a probability tuning method is introduced. The initial probability of every fea-
ture to be selected is p0, and all the probabilities form a selection probability vector p ¼ hp1; p2; . . . ; pni. We define a ‘‘small”
probability constant d, and is used to tune the components’ values of p in the selection procedure. d is called as probability
tuning constant, and 0 < d < 1. The meaning of ‘‘small” is that the tuning of p is like micro tuning. When a feature i has been
selected and its weight has been tuned, if the new weight vector is better than the old weight vector, then the corresponding
probability component pi are updated by adding d to it, and the probability that the feature be selected is increased. Else if
the new weight vector is worse than the old one, then the corresponding probability component pi is decreased by a value of
d. So, the strategy stimulates the selection of good features and restrains the selection of bad features by tuning the proba-
bility vector. This strategy can be described in the following algorithm.

Suppose the feature set is F ¼ hf1; f2; . . . ; fni, the feature weight vector is w ¼ hw1;w2; . . . ;wni, and the selection probability
vector is p ¼ hp1; p2; . . . ; pni.

Algorithm 3 (Tuning of selection probability)

1: Feature selection procedure, fi is selected, and its weight wi is to be tuned.
2: wi is tuned and w is updated. The new vector w0 is evaluated.
3: if w0 is better than w
4: w is replaced by w0.
5: pi ¼ pi þ d
6: else
7: w0 is discarded and w is reserved.
8: if pi > d
9: pi ¼ pi � d

10: else
11: pi ¼ 0
12: end if
13: end if
14: Normalization of p.
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4.4. Calculation of data gravitation

In the DGC model, the data gravitation between two data particles is calculated by Eqs. (3) and (4). After the features in
the feature set are weighted, the calculation method for data gravitation must be changed. As per the principles of data grav-
itation, the value of data gravitation is influenced by two factors: the data masses of the two data particles and the Euclidian
distance between them. The data mass of a data particle is the number of data elements that belong to the data particle and
the feature weight vector w cannot influence it. But w can influence the distance between the two data particles in the data
space. As the features have been weighted, the distance between two data particles in the data space is not their Euclidian
distance in the data space, but the weighted distance given below:
Table 1
Charact

Data se

Iris
Glass
Segmen
Vehicle
Wine
Vowel
Pima
WBCD
Ionosph
Hepatit
Sonar
Zoo
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

wiðx1i � x2iÞ2
vuut : ð7Þ
The calculation of the data gravitation is described as follows:
F 0 ¼ m1m2

r02
: ð8Þ
5. Experiments and results

5.1. Results and analysis

Twelve well-known classification data sets were selected for the experiments, including iris data, glass data, segment
data, vehicle data, wine data, vowel data, Pima Indian diabetes data, Wisconsin breast cancer data (WBCD), ionosphere data,
hepatitis data, sonar data and zoo data. All these data sets are from the UCI machine learning repository, which are available
from the web site: http://www.ics.uci.edu/~mlearn/databases/. Main characteristics of these data sets are depicted in Table 1,
including number of data samples, number of features (inputs) and number of data classes. For comparison purposes, the
first six data sets were selected according to [16] and [27], and the last two were selected according to [11] and [27].

First, all features were scaled for each data set. For a feature F in a data set, if the maximum value is fmax and the minimum
value is fmin, original value of this feature of a sample is f. Then the feature value of this sample is scaled as follows:
fnorm ¼
f � fmin

fmax � fmin
ð9Þ
In this paper, two widely used validation method were applied, 10-fold cross-validation and full train-full test (FT-FT). Ten-
fold cross-validation was employed in [16] and [11], while FT-FT was used in [27].

Ten fold cross-validation. Each data set was split into 10 subsets randomly, and all samples of each class are uniformly as-
signed to these subsets. Then a subset was used as the testing set, the other nine subsets as a whole training set, one time
validation was performed for this pair of training and testing set. The procedure was repeated ten times and each subset was
used as test set for one time.

Full train-full test. The full data set was used for training, and the full data set was also used for testing. In [27], 10 times of
experiments were performed with different model parameters. We also executed 10 times of experiments on the same data
sets, but different executions generated feature weight vectors in a random phrase.

Table 2 illustrates the 10-fold cross-validation results using DGC algorithm. All empirical results for the eight data sets are
listed, including the worst, the best and mean testing accuracy of each data set.
ers of used data sets.

t name No. of samples No. of features No. of classes

150 4 3
214 9 7

t 2310 19 7
846 18 4
178 13 3
528 10 11
768 8 2
683 10 2

ere 351 34 2
is 155 19 2

208 60 2
101 17 7

http://www.ics.uci.edu/~mlearn/databases/
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Table 3 compares the DGC results with the results reported in [16]. Since there is no worst and mean testing accuracies in
[16], only best results were compared. As illustrated in Table 3, DGC achieved better accuracies than other classifiers for four
out of six data sets, especially for glass data. DGC achieved testing accuracy of 90%, this is far higher than other classifiers.
Also it can be seen in Table 2, the mean accuracy of DGC for glass data is higher than other classifiers. For segment and vehi-
cle data, DGC and SGF network achieved basically the same level of accuracy, but lower than SVM. The benchmark results of
these two data sets suggest that DGC and other classifiers have some blind spots, and therefore may not be able to perform as
well in some cases.

Fuzzy integral-based perceptron is a two-class pattern classification model proposed in [11] and the authors used Pima
Indian diabetes data and Wisconsin breast cancer data for experiments. Srinivasa et al. [23] proposed a self-adaptive migra-
tion model GA (SAMGA) and they used Pima and WBCD data set for experiments. We compared the DGC performance for
Pima data and WBCD data with the results reported in [11,23] and Table 4 depicts the comparison results. DGC achieved
the best accuracy for both data sets.

For the data sets of ionosphere, hepatitis, sonar and zoo, we compared our experimental results with several new clas-
sification technics. QPL is a customized classification learning method based on query projections [8]. Cohen et al. [5] pre-
sented a novel decision-tree instance-space decomposition method with grouped gain-ratio termed CPOM, and this method
can be applied for classifiers such as neural network (CPOM-NN) and Naive-Bayes (CPOM-NB). Han et al. [8] used ionosphere,
hepatitis, sonar and zoo data sets for the evaluation of their method, and [5] used sonar and zoo data sets for their exper-
iments. DGC was used and the empirical results and comparison with SAMGA, QPL and CPOM-NB for the four data sets
are illustrated in Tables 5 and 6.
Table 2
Ten fold cross-validation testing results using DGC.

Data set name Worst (%) Best (%) Mean (%)

Iris 86.67 100.00 95.33
Glass 68.18 90.00 79.08
Segment 93.07 96.97 95.41
Vehicle 67.06 74.12 70.69
Wine 94.12 100.00 98.30
Vowel 94.44 100.00 98.49
Pima 68.83 81.82 76.56
WBCD 92.65 98.53 96.19
Ionosphere 86.11 94.29 90.63
Hepatitis 87.10 95.48 91.51
Sonar 85.71 95.45 90.85
Zoo 93.07 99.01 96.39

Table 3
Comparison of best testing results of six data sets.

Data set name DGC (%) SGF network [16] (%) SVM (%) 1NN (%)

Iris 100.00 97.33 97.33 94.00
Glass 90.00 75.74 71.50 69.65
Segment 96.97 97.27 97.40 96.84
Vehicle 74.12 73.53 86.64 70.45
Wine 100.00 99.44 99.44 96.08
Vowel 100.00 99.62 99.05 99.43

Table 4
Comparison of best testing results of Pima and WBCD data.

Data sets DGC (%) Fuzzy integral-based perceptron [11] (%) SAMGA [23] (%) Decision tree-based fuzzy classifier (%)

Pima 81.82 74.81 73.00 73.05
WBCD 98.53 96.38 94.10 96.82

Table 5
Comparison of mean testing results of ionosphere and hepatitis data.

Data sets DGC (%) SAMGA [23] (%) QPL [8] (%)

Ionosphere 90.63 86.20 90.30
Hepatitis 91.51 84.70 90.00



Table 6
Comparison of mean testing results of sonar and zoo data.

Data sets DGC (%) CPOM-NB [5] (%) QPL [8] (%)

Sonar 90.85 76.44 87.00
Zoo 96.39 95.04 96.20

Table 7
FT-FT evaluation for glass data set.

Classification model Worse (%) Best (%) Mean (%)

CF1 rule-base classifier 54.20 66.35 59.58
CF4 rule-base classifier 57.00 62.14 60.32
ROC rule-base classifier 60.28 70.09 65.18
DGC 68.22 73.36 70.55

Table 8
FT-FT evaluation for Pima data set.

Classification model Worse (%) Best (%) Mean (%)

CF1 rule-base classifier 67.83 73.30 69.64
CF4 rule-base classifier 69.92 73.82 71.55
ROC rule-base classifier 73.95 75.00 74.65
DGC 65.10 76.82 72.45

Table 9
FT-FT evaluation for wine data set.

Classification model Worse (%) Best (%) Mean (%)

CF1 rule-base classifier 89.32 94.38 92.97
CF4 rule-base classifier 89.88 96.06 94.26
ROC rule-base classifier 91.01 96.06 94.77
DGC 98.31 99.44 98.99
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Zolghadri and Mansoori [27] used receiver operating characteristic (ROC) analysis for weighing fuzzy classification rules
and glass, wine and Pima data were applied for the validation. Experiments were executed 10 times for each data set using
full train-full test method. Authors used various number of fuzzy rules for each time, and the value of the number of fuzzy
rules varied from 1 to 10. DGC was run 10 times for each data set using different parameter, such as the maximum radius of
mass point. Tables 7–9 illustrate the comparison results.

5.2. Discussions

DGC model is able to obtain high classification performances in many cases, especially for the balanced data sets such as
iris, wine and vowel data sets. For these data sets, the numbers of instances of different classes are approximately the same
and the data gravitation is also balanced.

Our experiment results also reveal that if there exists a class, which includes extremely small or extremely large number
of instances in the data set, the DGC approach may fail because of the imbalance of data gravitation. This imbalance means
data gravitation from a certain class is extremely strong or extremely weak, so a test instance is always (not) classified to this
class.

6. Conclusions

In this paper, a data gravitation based classification method with weighted feature is proposed. An important feature of
DGC is its simple classification principle. By simulating the gravitation and the Law of Gravitation in the natural world, we
proposed a novel classification technique, which is also very easy to implement. The paper also studied the feature selection
problem of DGC. It was found that selecting good features is very important for DGC. By simulating the mutation operator in
GA, the paper proposed a novel feature selection algorithm. Numerous experiments clearly illustrated that the feature selec-
tion algorithm is effective for DGC.

Twelve well-known UCI machine learning data sets were used for the experiments. For most of these data sets (iris, glass,
wine, vowel, Pima and WBCD), DGC achieved better classification accuracies than several classical and new classification
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methods. For the other data sets, DGC also achieved reasonably high accuracies. Empirical results show that DGC is really an
effective classification method. Our experiment results also indicate that DGC suffers from imbalanced data, since it per-
formed poorly for extremely unbalanced data sets. This is an important research topic in our future research.
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