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a b s t r a c t 

Brain disease such as brain tumor, Alzheimer’s disease, etc. is a major public health problem, and the 

main cause of death worldwide. Expert systems are gaining much attention in the medical image analy- 

sis field for the clinical treatment and follow up study. Traditional sparse representation based classifiers 

use a random subset in a limited range. It suffers from the problem of repetition of the training sam- 

ples which may prevent obtaining optimal subset having all variations. To overcome this problem, nested 

cross-validation based adaptive sparse representation algorithm is newly proposed. The novelty of the 

work are: (i) a novel strategy for optimal subset selection, (ii) adaptively selects an optimal subset, (iii) 

ability to overcome the problems like overfitting, underfitting and bias results, (iv) better accuracy in 

all variations of training samples, and (v) newly applied to pathological brain classification problem. The 

proposed system is based on a hybrid methodology of feature selection followed by classification. The 

gray level co-occurrence matrix is used to extract the spatial texture feature vectors of the brain MRI 

samples. The nested cross-validation based adaptive sparse representation algorithm is used for classifi- 

cation. It uses a nested cross-validation technique to obtain the optimal value of the subset size ( N ) based 

on maximum classification accuracy. The results demonstrate the superiority of the proposed algorithm 

over the state-of-the-art methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pathological brain classification is an increasingly important

ask in medical image analysis. It classifies a given brain image as

ormal or diseased. It helps us in the early detection of the vari-

us brain diseases like brain tumors, Alzheimer disease, Parkinson

isease, etc. Magnetic resonance imaging (MRI) is a standard neu-

oimaging technique used in the clinical assessment of the patho-

ogical brain ( Kharrat, Benamrane, Messaoud, & Abid, 2009 ). How-

ver, the domain experts make the final decision. Over the last few

ecades, expert systems play an important role in disease diag-

osis and classification ( Dora, Agrawal, Panda, & Abraham, 2017b;

l-Dahshan, Hosny, & Salem, 2010; El-Dahshan, Mohsen, Revett, &

alem, 2014 ). The main objectives behind the development of the

xpert systems are manifold. They could assist domain experts in

nalyzing a disease. Additionally, false diagnosis due to fatigue as
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ell as inter and intra reader variability could be avoided. Fur-

her, they help to reduce the workload. Nevertheless, the complex

natomical structure of the brain makes the design of an expert

ystem for pathological brain classification a challenging task. In

ecent years, there has been an increasing interest in the design of

lassifiers using machine learning techniques ( Chakraborty, Midya,

 Rabidas, 2018; Katzir & Elovici, 2018; Shihabudheen, Mahesh,

 Pillai, 2018; Zhang et al., 2018 ). Sparse representation based

ethods have gained much appreciation in the field of pattern

ecognition for the applications like face recognition ( Wright, Yang,

anesh, Sastry, & Ma, 2009 ). So far, however, there has been lit-

le discussion about their use in medical image analysis ( Xu, Wu,

hen, & Yao, 2015 ). 

A Gauss-Newton representation based algorithm (GN- 

BA) was proposed in Dora, Agrawal, and Panda (2017a) and

ora et al. (2017b) . It is a sparse representation based method

sed for breast cancer classification and pathological brain

lassification. The experiments were conducted using different

raining-testing partition ratios (50/50, 60/40 and 70/30) to in-

estigate the performance of the GNRBA. However, performance

valuation using these types of ratios may involve class imbalance
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problem. To overcome this problem, a 10-fold cross-validation

technique was used to evaluate the performance measures. It

partitioned the entire dataset into 10 equal sized blocks. The

90% of the blocks were used for training and the remaining 10%

utilized for testing. The testing block cover the entire database

(i.e. 10 repetitions of the 10% of testing block, exchanged in all

runs). However, it still suffers from the problem of repetition of

the training samples during its evaluation procedure. This may

give rise to problems like overfitting, underfitting and biased

results. In view of this, nested cross-validation technique is a good

alternative. This has inspired us to propose nested cross-validation

based adaptive sparse representation (NCVASR) method. For the

first time, it is applied to the problem on hand. The experimental

results show the superiority of the system. 

A large and growing body of literature has investigated the

pathological brain classification problem ( Ain, Jaffar, & Choi, 2014;

El-Dahshan et al., 2010; El-Dahshan et al., 2014; Jothi et al., 2016 ).

Mostly, the researchers adopted a hybrid scheme, i.e. feature ex-

traction method with classification technique, to solve this prob-

lem. For instance, a study by El-Dahshan et al. (2010) uses the dis-

crete wavelet transform (DWT) to extract the features from the T2-

weighted brain magnetic resonance (MR) images. To avoid the di-

mensionality problem, principal component analysis (PCA) is used

to transform the DWT features to a low dimensional space. Fi-

nally, classification is carried out by using two types of classifiers:

k- nearest neighbour (k-NN) and artificial neural network (ANN).

The method works well for the classification problem, i.e. normal

brain vs. abnormal brain. However, the authors conclude that if the

number of images in the database changes, the method needs to

be trained again. Ain et al. (2014) reported a method for classifi-

cation of brain MR image as normal or pathological. In the study,

the authors used the first and second order texture feature meth-

ods to extract features. Subsequently, ensemble based support vec-

tor machine (SVM) is used to carry out the classification task. Af-

ter the successful identification of the pathological brain, fuzzy c-

means (FCM) is used to segment out the tumor region. However,

the method is silent about the further classification of the tumor

as benign or malignant. 

A recent study by Jothi et al. (2016) investigated a hybrid in-

telligent system to classify normal brain from abnormal brain. A

variety of methods are used to extract features from the MRI, such

as gray level co-occurrence matrix (GLCM), gray level different ma-

trix, etc. After feature extraction, a tolerance rough set firefly based

quick reduct (TRSFFQR) technique is employed for feature selec-

tion. The authors identify three types of classifiers: Naive Bayes,

J48 and IBK, for classification. However, the overall classification

accuracy achieved by the method is low, i.e. 93.5%. Additionally, its

performance to different types of medical images are not reported.

A recent survey conducted by El-Dahshan et al. (2014) presents the

state-of-the-art methods for brain MRI tumor detection and clas-

sification. In the survey, the authors also included their proposed

method. The method uses the feedback pulse coupled neural net-

work (FPCNN) to segment the tumor from the whole brain MRI.

DWT is used to extract the features. Afterwards, PCA is used to

avoid the dimensionality problem. Finally, a feedforward backprop-

agation neural network (BPNN) is used for classification. The state-

of-the-art methods in brain tumor classification are used for com-

parison. However, the method needs training whenever the num-

ber of images in the database changes. 

Recently, a wrapper approach for data sampling executed via

nested cross-validation is found in More (2016) . It is used to se-

lect an optimal feature subset for an induction learning algorithm.

In this approach, the database is partitioned into disconnected

training set and test set. The training set is divided into cross-

validation sets. The first feature is chosen based on the highest

cross-validation accuracy. The process is repeated continuously to
dd features one-by-one based on maximizing the cross-validation

ccuracy. Once the termination criterion is reached, the feature se-

ection is stopped. A classifier is trained using the selected features

nd the full training set. The classifier is tested on the held-out

est set, which are not used during the feature selection. However,

he performance of this approach depends on the induction algo-

ithm or predictive model used to score the feature subset. Litera-

ure study evident that there are some learning algorithms which

erforms feature selection as part of their overall operation such

s sparse regression, regularized trees, decision tree, memetic al-

orithms, auto-encoding network, etc. The proposed NCVASR al-

orithm is a sparse regression based method. Unlike feature se-

ection, the training feature vectors selection is a part of its over-

ll operation. In the context of sparse representation based classi-

er, a new scheme for training feature vectors selection via nested

ross-validation is proposed. The suggested method avoids the lim-

tations faced in wrapper approaches such as increasing overfitting

isk when the number of observations is insufficient and depen-

ency of performance on induction algorithms. 

In view of all that has been mentioned so far, it is evident that

eature extraction followed by the classification technique is one of

he most suitable ways adopted by the researchers, for the prob-

em on hand. In this work, we have developed a hybrid method-

logy based on the novel NCVASR method for pathological brain

R image classification. It is hybrid in the sense that the feature

xtraction scheme is utilized followed by classification technique.

LCM is used to extract the second order texture feature vectors

rom the input brain MR images ( Nabizadeh & Kubat, 2015; Val-

kx & Thijssen, 1997; Zacharaki et al., 2009 ). The novel NCVASR is

mplemented for classification purpose. It sparsely represents the

nknown test feature vector as the linear weighted summation of

ll the training feature vectors. All the training feature vectors are

rom different classes. Thus, all the training feature vectors in the

epresentation are not essential to classify a test feature vector,

hich belongs to a particular class only. These training feature vec-

ors may have an adverse effect of increasing the misclassification

ate. These types of training feature vectors need to be discarded

rom the representation for accurate classification. The suggested

CVASR method selects a subset having N relevant training fea-

ure vectors. A maximum class contribution criteria is employed

o classify the test feature vector. We have proposed to use the

ested cross-validation technique to adaptively optimize the value

f N ( Reunanen, 2003; Statnikov, Aliferis, Tsamardinos, Hardin, &

evy, 2004 ). It uses an inner cross-validation loop to obtain the

ptimal value of N using the complete classification procedure sub-

ected to maximum classification accuracy, as discussed above. An

uter cross-validation loop is used to classify a set of new unseen

est feature vectors using the optimal value of N . The use of nested

ross-validation technique facilitates us to adaptively optimize the

alue of N . Further, the problems like overfitting as well as bias in

he result are also avoided. 

Traditionally, the sparse representation based classifiers use a

ubset of training samples during classification. The size of the

ubset is randomly selected from the range [0.05 × T , 0.2 × T ],

here T is the total number of training samples. This is a trial and

rror scheme. However, it suffers from the problem of repetition

f the training samples during its evaluation procedure. This repe-

ition may prevent us to obtain an optimal subset of training sam-

les having all variations. In this context, we have proposed a clas-

ifier based on nested cross-validation technique to select the opti-

al subset for accurate classification, which is a novel idea. When-

ver, a new test sample arrives, the proposed algorithm adaptively

elects an optimal subset that best represents the new test sample.

he novelty of this work are: (a) a novel strategy for optimal sub-

et selection is proposed for the sparse representation based meth-

ds, (b) adaptively selects an optimal subset whenever a new test
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Fig. 1. Block diagram of the suggested hybrid methodology. 
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Fig. 2. Example of pre-processing. (a) Original brain MRI. (b) Brain boundary detec- 

tion using Brainsuit. (c) Skull stripped MRI. 
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ample is applied for classification, (c) this idea provides ability to

vercome the problems like overfitting, underfitting and bias re-

ults, which are common in conventional classification tasks, (d) it

llows us to evaluate the classification accuracy in all variations of

raining samples by partitioning the samples into multiple training

nd validation sets, and (e) this idea is newly applied to patholog-

cal brain classification problem. 

The overall arrangement of this paper is composed of four dif-

erent sections, including this introduction section. Section 2 is

oncerned with the suggested method. Section 3 presents the ex-

erimental results as well as includes a discussion of the findings.

inally, Section 4 outlines the conclusion. 

. Proposed method 

The suggested scheme is a hybrid methodology based on, fea-

ure extraction combined with classification, for pathological brain

lassification. At first, the second order texture features are ex-

racted from the pre-processed brain MR images. NCVASR algo-

ithm makes use of these features to classify an unknown brain

RI as normal or pathological. The block diagram of the suggested

ethod is shown in Fig. 1 . Initially, the pre-processing technique is

pplied to all the images in the database. The texture feature vec-

ors from the pre-processed images are extracted using the GLCM.

hese feature vectors are partitioned into two different sets, i.e.

raining feature vectors and test feature vectors. The training fea-

ure vectors are used by the NCVASR for classification of the test

eature vectors. It intends to determine a subset having N signifi-

ant training feature vectors nearest to the test feature vector us-

ng nested cross-validation technique. The inner loop exploits these

raining feature vectors by partitioning them into a train set and

 validation set. An optimal value of N is obtained from the inner

ross-validation loop to select the subset, based on maximum clas-

ification accuracy. Finally, the subset is exploited for classification

f the unseen test feature vectors. The following sub-sections ex-

lain the proposed method in detail. 

.1. Pre-processing 

In this stage, skull stripping is employed as a pre-processing

tep. We have used Brainsuit to remove the skull from the brain
RI, which is a popular freely available toolbox ( Brainsuit, 2017 ).

fter skull stripping, intensity normalization technique is used to

ake the suggested approach insensitive to contrast variation ( Jen

 Yu, 2015 ). For a given brain MR image I ( i, j ), the normalized im-

ge is obtained as: 

 N (i, j) = 255 

(
I(i, j) − I min 

I max − I min 

)
(1) 

here, I ( i, j ) is the intensity of the pixels at location ( i, j ), I min is

he minimum intensity value and I max is the maximum intensity

alue. An example of pre-processed image is shown in Fig. 2 . 

.2. Feature extraction 

A considerable amount of research has been published on the

eature extraction methods. These studies include methods like

avelet transform, Gabor filter, GLCM, etc. ( Nabizadeh & Kubat,

015; Valckx & Thijssen, 1997; Zacharaki et al., 2009 ). A good set

f features provides us an opportunity to perform accurate classi-

cation. However, the medical images like MRI has some inherent

rtifacts such as complex shape, size, texture, etc. making feature

xtraction a challenging task. Additionally, anatomical structure of

he MRI differs remarkably with person to person. In recent years,

uch of the literature available on medical image analysis used

LCM for feature extraction ( Ain et al., 2014; El-Dahshan et al.,

014; Jothi et al., 2016 ). Collectively, these studies, evidence that

t is still used as one of the texture modelling technique. This is
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the reason, we have used GLCM for feature extraction from the

brain MRI. It is a technique which considers the spatial informa-

tion of an image to capture the second order statistical features.

They characterize the joint probability distribution between the in-

tensity levels. This type of distribution informs us about the oc-

currence of two intensity levels, apart from each other by a dis-

tance d and angle θ . A detailed discussion of the GLCM is found in

Valckx and Thijssen (1997) . In the spatial domain, each intensity

level is surrounded by eight neighbouring intensity levels. Thus,

there are eight possible angles such as θ = 0 °, 45 °, 90 °, 135 °, 180 °,
225 °, 270 ° and 315 °. It is suggested that the GLCM possesses sym-

metric behavior, i.e. co-occurrence of the intensity levels calculated

at θ = 0 ° is same with the pair evaluated using θ = 180 °. This is

well carried out for other angles like θ = 45 °, 90 ° and 135 °. In this

work, we have used d = 1 and only four values of θ = 0 °, 45 °, 90 °
and 135 ° to extract the texture features. The final feature vector is

constructed by averaging the four GLCMs for each θ . 

2.3. Nested cross-validation based adaptive sparse representation 

This section describes the novel NCVASR. It utilizes the fea-

ture vectors extracted from GLCM for classification. It is based on

the principle of the sparse representation ( Wright et al., 2009 ). It

represents an unknown test feature vector as the linear weighted

summation of all the training feature vectors, given as: 

 = φ1 y 1 + φ2 y 2 + · · · + φT y T (2)

where, t is the unknown test feature vector, y = [ y 1 , y 2 , . . . , y T ] is

the set of the T training feature vectors and φ = [ φ1 , φ2 , . . . , φT ]

is the random weight assigned to all the training feature vectors.

The expression in (2) uses all the training feature vectors to rep-

resent an unknown test feature vector. It is to be noted that, all

the training feature vectors are from different classes. This study

deals with a binary classification problem. It is evident that, if all

the training feature vectors in the representation are utilized, this

may possibly increase the misclassification rate ( Xu, Zhang, Yang, &

Yang, 2011 ). A way to decrease it is to select a subset of significant

training feature vectors that are nearest to the test feature vector.

The Euclidean distance is viewed as a measurement to calculate

the similarity between a test feature vector ( t ) and a training fea-

ture vector y i , for i = 1 , 2 , . . . , T , as given below: 

d i = ‖ t − y i ‖ 2 (3)

From (3) , a small distance d i indicates that the i th training feature

vector ( y i ) is nearest to the test feature vector t . We have used

(3) to extract a subset having N nearest training feature vectors,

such that N � T . Additionally, the remaining training feature vec-

tors are discarded for accurate classification. Further, we preserved

the class labels of the N training feature vectors as the candidates

for the class label of the unknown test feature vector. However, it

is not clear, for the different values of N which subset will help

us to achieve good classification accuracy from the available al-

ternatives. Moreover, the selection of the value of N on trial and

error basis may result in overfitting problem. If the subset with

this value of N is used, it may not perform well to an unseen test

feature vector despite its excellent performance on the known fea-

ture vectors. In Xu et al. (2011) , it is suggested that, the value of

N is selected from the range of [0.05 × T, 0.2 × T]. However, it

still suffers from the problem of repetition of the training feature

vectors during its evaluation procedure. This repetition may pre-

vent us to obtain a good value of N to select a subset having all

variations that would be observed, if each subset containing the

training feature vector is completely independent of the previous

subset. 

In view of this, the nested cross-validation technique is a good

alternative. In this paper, we have used this technique to optimize
he value of the parameter N ( Reunanen, 2003; Statnikov et al.,

004 ). Literature study suggests that it is a well-known technique

sed to estimate the performance of the method ( Statnikov et al.,

004 ). The inner loop is used to optimize the hyper-parameters us-

ng the complete classification procedure of the method. The outer

oop is used to estimate the classification rate using the optimal

yper-parameters value of an unseen test data. This test data is

ot used in the inner loop during hyper-parameters optimization.

e have used the inner cross-validation loop to optimize the value

f N based on maximum classification accuracy. This optimal value

f N is used to select a subset to classify the unseen test feature

ectors in the outer cross-validation loop. 

Fig. 3 illustrates the procedure of optimizing the parameter N

or the subset selection using a m × n nested cross-validation tech-

ique. In the outer loop, it divides all the feature vectors (training

lus test) into m different blocks. Out of the m blocks, m − 1 blocks

re used as the training feature vectors. The remaining one block

s used as the test feature vectors (test block). The inner loop per-

orms n -fold cross validation using the feature vectors of the m − 1

locks by partitioning it into a training set and a validation set. The

lassification accuracy, i.e. CA i = 

T P+ T N 
T P+ T N+ F P+ F N for i = 1 , 2 , . . . , n, re-

ulting from each fold in the inner loop is calculated, where TP →
umber of true positives, TN → number of true negatives, FP →
umber of false positives and FN → number of false negatives. On

ompletion of the inner loop, an optimal value of N is obtained

ased on the classification accuracy, as given below: 

 adap(x ) = arg max 
N 

{ CA i } (4)

here, N adap ( x ) for x = 1 , 2 , . . . , m is the optimal value of N used in

he outer loop to classify the new unseen test block. The outer loop

s repeated for m times by exchanging the test block in all runs.

n this way, the nested cross-validation procedure facilitates us to

daptively select the optimal value of N whenever a new unseen

est feature vector arrives. Additionally, it allows us to optimize

he performance of the suggested NCVASR method while avoiding

verfitting problem and possible bias in the result. 

As depicted from Fig. 3 , the inner cross-validation loop is used

o find the optimal value of N to select a subset. The test feature

ector is now represented as the linear weighted summation of the

raining feature vectors from the subset, given as: 

 = φ1 ̂  y 1 + φ2 ̂  y 2 + · · · + φN ̂  y N (5)

here, ̂ Y = [ ̂  y 1 , ̂  y 2 , . . . , ̂  y N ] is the optimal subset of the N training

eature vectors. From (5) , it is observed that the contribution of

he j th training feature vector towards t is φ j ̂  y j , for j = 1 , 2 , . . . , N.

owever, the random value of φ in the representation results in

nconsistency in indicating the contribution of the training feature

ectors. The optimal value of φ is used to maintain the consistency

n the contribution that each of the training feature vectors make

owards t . A way to obtain the optimal φ is by minimizing the sum

f square error ( Dora et al., 2017b; Gill, Murray, & Wright, 1981;

ang, Sun, & Mizutani, 1997 ). We have employed this scheme to

pdate the value of φ, as given below: 

next = φnow 

+ �φ (6)

here, �φ = ( ̂  Y T ̂ Y + μI) −1 ̂ Y T � f, μ is a regularization parameter,

 is the identity matrix and �f is the difference between the ac-

ual output and the desired output when the input is ̂ Y . In this

aper, μ = 0.1 is used as suggested in Jang et al. (1997) and

ill et al. (1981) . After the termination criterion is reached, the op-

imal φopt equals φnext . 

After obtaining the optimal φopt , a class contribution criterion is

sed to classify the test feature vector. The criteria calculates the

eighted sum of the training feature vectors from the same class,
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Table 1 

Detail of training and testing partition. 

Dataset Training Testing Total 

H P H P H P 

Dataset 1 (D1) 15 40 3 8 18 48 

Dataset 2 (D2) 16 112 4 28 20 140 

Dataset 3 (D3) 16 144 4 36 20 180 

Dataset 4 (D4) 28 176 7 44 35 220 

H → Normal brain MRI; P → Pathological brain MRI 

D  
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l  
iven as: 

 L = 

n l ∑ 

l=1 

φ(opt) l ̂  y l , L = 1 , 2 , . . . , C (7) 

here, n l is the number of training feature vectors from the L th

lass and C is the total number of classes. The class label of the

est feature vector is identified as: 

 L = ‖ t − C L ‖ 2 (8) 

From (8) , a smaller distance between t and C L indicates the test

eature vector is identified to L th class. The algorithm of the pro-

osed NCVASR for pathological brain classification is given as fol-

ows: 

. Results and discussions 

The experiments are conducted using MATLAB software on a

AC with core i 5. To show the robustness of the proposed method,

eal patients brain MRI samples are collected from the Harvard

hole Brain Atlas (HWBA) database ( Atlas, 2017 ). Four different

atasets (Dataset 1, Dataset 2, Dataset 3 and Dataset 4) are con-

tructed from the above collected brain MR images. Dataset 1 and
ataset 2 contains seven types of pathological brains. The Dataset

 consists of eleven types of pathological brains. The Dataset 4

ncludes eighteen types of pathological brain MRIs. The detail of

raining and testing partition used in the three datasets is depicted

n Table 1 . Detailed description about the database is found in the

ebsite. 

Example images from the HWBA database are shown in Fig. 4 . 

The proposed method uses the m × n nested cross-validation

echnique to obtain the best performance estimates as well as to

void the overfitting problem. It involves two loops, i.e. an outer

oop and an inner loop. For the experiment, we have used the
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Algorithm 1 NCVASR. 

Require: Feature vectors of all the brain MRIs from the database. 

1: Z ← Input feature vectors are partitioned into m equal blocks. 

2: for a = 1 : m do 

3: B ← a th block from Z (outer loop test feature vectors). 

4: A ← remaining blocks from Z (outer loop training feature 

vectors). 

5: W ← A is partitioned into n equal blocks. 

6: for b = 1 : n do 

7: F ← b th block from W (validation set in the inner loop). 

8: E ← remaining blocks from W (training set in the inner 

loop). 

9: for i = 2 : n 2 (number of vectors in E) do 

10: for j = 1 : n 1 (number of vectors in F ) do 

11: f ← F ( j ) , j th validation feature vector 

12: d x ← ‖ f − E x ‖ 2 ; x = 1 , 2 , . . . , n 2 . 

13: d x (s ) ← min { d x } ; s = 1 , 2 , . . . , N. 

14: find optimal φopt using (6). 

15: Calculate class contribution using (7). 

16: Calculate class label of f using (8). 

17: end for 

18: end for 

19: [ CA b , N b ] ← max { CA i } ; CA = classification accuracy 

20: end for 

21: N adap(a ) ← arg max N b { CA b } using (4) 

22: for i = 1 : n 3 (number of vectors in B ) do 

23: g ← B (i ) , i th test feature vector 

24: d h ← ‖ g − A h ‖ 2 ; h = 1 , 2 , . . . , n 4 (number of vectors in A ). 

25: d h (r) ← min { d h } ; r = 1 , 2 , . . . , N adap(a ) . 

26: find optimal φopt using (6). 

27: Calculate class contribution using (7). 

28: Calculate class label of f using (8). 

29: end for 

30: Return : Class of the unknown test feature vectors in B . 

31: end for 

Fig. 4. Sample images from the HWBA database. (a) Normal brain MRI. (b) - (h) 

Pathological brain MRI. 

 

 

 

 

 

 

 

 

Table 2 

Details of training-testing ratio used in the experiment based on D3. 

Outer loop Total Training-testing partition ratio 

iteration images Outer loop Inner loop 

Training Testing Training Validation 

1 200 160 40 80 80 

2 200 160 40 80 80 

3 200 160 40 80 80 

4 200 160 40 80 80 

5 200 160 40 80 80 

Table 3 

CA, SEN, SPE , and AUC of the NCVASR. 

Performance index Value D1 D2 D3 D4 

CA Mean 100% 99.38% 98.83% 99.5% 

Max 100% 100% 100% 100% 

Std. dev. 0 1.9220 1.1524 0.1250 

SEN Mean 1.0 0 0 0 1.0 0 0 0 0.9867 0.9973 

Max 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

Std. dev. 0 0 0.0014 0.0280 

SPE Mean 1.0 0 0 0 0.9600 1.0 0 0 0 0.9826 

Max 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

Std. dev. 0 0.0080 0 0.0135 

AUC Mean 1.0 0 0 0 0.9978 0.9714 0.9935 

Max 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

Std. dev. 0 0.0192 0.0061 0.0223 

std. dev. → standard deviation 
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value of m = 5 and n = 2. For instance, Table 2 shows the statis-

tics of the number of images employed in both the loops using

D3. The outer loop uses a stratified m -fold cross-validation tech-

nique. From Table 2 , it is observed that for the value of m = 5

the database is divided into 5 equal blocks, i.e. 200/5 = 40 images

in each block. Out of the 5 blocks, 4 blocks are used in the outer

loop as the training images (training block i.e. 4 × 40 = 160 im-

ages). The remaining one block is used as the unseen test images
n the outer loop (test block). The outer loop is repeated 5 times by

hanging the test block in each iteration. The training block from

he outer loop is exploited in the inner loop for parameter opti-

ization. The inner loop uses a stratified n -fold cross validation

echnique. For the value of n = 2, the training block is partitioned

nto 2 equal blocks, i.e. 160/2 = 80 images in each block. These

locks are employed as training and validation blocks in the inner

ross-validation loop. 

The performance indices such as classification accuracy ( CA ),

ensitivity ( SEN ), specificity ( SPE ) and area under receiver oper-

ting characteristics ( AUC ) of the suggested technique, calculated

sing the four datasets is presented in Table 3 ( Fawcett, 2006;

okolova & Lapalme, 2009 ). From the table it is observed that the

uggested method achieved 100% accuracy in terms of CA, SEN, SPE

nd AUC in D1. The reason may be the use of less instances for

esting as compared to the training instances. Additionally, for the

ther three datasets it also shows a good performance with accu-

acy more than 97%. Moreover, the suggested NCVASR method is

ompared with the different methods to show its superiority. 

The comparison is based on the performance indices such as

A, SEN, SPE , confusion matrix ( CM ) and AUC ( Fawcett, 2006;

okolova & Lapalme, 2009 ). Recent literature on pathological brain

lassification is used to select the methods for the comparison.

ll these methods used images from HWBA database. Thus, they

re included for a fair comparison. Table 4 shows the comparison

ased on CA using D1, D2 and D3. 

It is depicted from the table that our approach outperforms all

ther methods using the three datasets. The reason may be the

ptimal selection of the subset. 

Table 5 presents the comparison of the proposed NCVASR

ethod with different methods based on CA, SEN and SPE using

4. It is apparent from the table that our method outperforms

ll other methods. The reason for this superior performance is the

bility to select the subset having the most significant training fea-

ure vectors from the optimal value of N . In addition, the value of

 is adaptive to the new unseen test feature vector. 

The following analysis provides deeper insights about the pro-

osed method. The CA obtained with earlier methods using D1, D2
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Table 4 

Comparison based on CA using D1, D2, and D3. 

Name of the method D1 D2 D3 

DWT + self-organizing 94% 93.17% 91.65% 

map ( Chaplot, Patnaik, & Jagannathan, 2006 ) 

DWT + SVM ( Chaplot et al., 2006 ) 96.15% 95.38% 94.05% 

DWT + SVM+radial basis 98% 97.33% 96.18% 

function ( Chaplot et al., 2006 ) 

DWT + PCA+k-NN ( El-Dahshan et al., 2010 ) 98% 97.54% 96.79% 

DWT + PCA+ANN ( El-Dahshan et al., 2010 ) 97% 96.98% 95.29% 

DWT + PCA+SVM ( Zhang & Wu, 2012 ) 96.01% 95% 94.29% 

Wavelet entropy + naive Bayes 92.58% 91.87% 90.51% 

classifier (NBC) ( Ortuño & Rojas, 2015 ) 

Wavelet packet Shannon 98.64% 97.12% 97.02% 

entropy + SVM ( Zhang et al., 2015 ) 

Wavelet packet Tsallis 99.09% 98.94% 98.39% 

entropy + SVM ( Zhang et al., 2015 ) 

Fractional fourier entropy (FRFE) + 97.12% 95.94% 95.69% 

Welchs t -test + NBC ( Wang et al., 2015 ) 

FRFE + multi-layer 99.85% 98.38% 97.02% 

perceptron ( Zhang et al., 2016 ) 

NCVASR 100% 99.38% 98.83% 

Table 5 

Comparison of CA, SEN , and SPE using D4. 

Name of the method CA (%) SEN SPE 

Independent component analysis 79 0.8700 0.7500 

+ SVM ( Wang & Fei, 2009 ) 

Pearsons correlation coefficients 82 0.8900 0.7700 

+ SVM ( Wang & Fei, 2009 ) 

PCA + SVM ( Wang & Fei, 2009 ) 85 0.8900 0.8400 

FPCNN + DWT+PCA 99 1.0 0 0 0 0.9280 

+ BPNN ( El-Dahshan et al., 2014 ) 

NCVASR 99.5 0.9973 0.9826 
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Table 6 

Comparison based on CM using D4. 

Name of the method Actual value Predicted value 

H P 

FPCNN + DWT+PCA+BPNN H 87 0 

( El-Dahshan et al., 2014 ) P 1 13 

NCVASR H 35 0 

P 1 219 

Table 7 

Comparison of the AUC value using D4. 

Name of the method AUC value 

FPCNN + DWT+PCA+BPNN 0.9800 

( El-Dahshan et al., 2014 ) 

NCVASR 0.9935 
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nd D3 datasets is found above 90%, whereas with D4 dataset their

erformances fall well below 80%. The reason is that the number

f pathological brain types and the number of testing instances are

ore in D4. On the other hand, our proposed method performs

ell above 99% with respect to CA in case of D4 dataset. Because

he role of N (subset size) is crucial in evaluating the CA . The op-

imal subset selection affects the values of TP ↑ , TN ↑ , FP ↓ and

N ↓ . It increases the numerator values (TP + TN) and decreases

he denominator value (TP + TN + FP + FN). As a result, the CA

ncreases. If FP and FN are zero, then CA becomes 100%. 

For instance, in D1 dataset, the number of pathological brain

nd the testing instances are less (P = 7 and H + P = 11) dur-

ng one outer loop of cross-validation. Our method yields 100% CA

ith unity value of SEN, SPE and AUC , which is interesting. The

eason is the FP and FN values become zero, which makes the CA

00%. The optimal subset selection idea incorporated in this work

elps in identifying a pathological brain as pathological and a nor-

al brain as healthy. Further, the idea of nested cross-validation

voids inclusion of images from a certain class into a class having

ifferent characteristics. This controls the values of FP and FN and

eeps them to a minimum. 

It is also observed that the proposed work performs well as

ompared to the existing methods while considering D4 dataset.

ote that number of pathological brain types and the number of

esting instances are more (P = 18 and H + P = 51) during one

uter loop of cross-validation. For example, the method using ICA

 SVM could obtain a CA of 79% only whereas our method yields

9.5%. Though there is a slight decrease in the value from 100%,

et the method is able to score a much better value even with an

ncreased number of testing instances. It is quite obvious from the

iterature that the increase in the number of instances will never

ake the values of FP and FN zero. Therefore, the CA is less than

00%. A similar trend is also observed in the values of SPE and SEN .
It is to be noted that the SEN value obtained with our method is

lightly less than the FPCNN+DWT+PCA+BPNN method. The reason

s that the number of test samples used is very less and the au-

hors have presented the maximum value of SEN . The number of

est samples used in our method is more and we have presented

he average value of SEN. In fact, we have also achieved a maxi-

um value of 1 for SEN as shown in Table 3 . 

A comparison based on CM using D4 is shown in Table 6 . CM

s a quantitative measure used to evaluate the predicted classifica-

ion result with the actual classification result. The FPCNN + DWT

 PCA + BPNN method is a state-of-the-art method for brain tumor

lassification. The authors compared their method with the other

ethods for brain tumor classification using HWBA database. 

As seen from Table 6 , the CM value indicates the predicted clas-

ification result with the actual classification result. The sum of

redicted values from each class should be close to the actual val-

es in that class. For instance, the total number of test samples

sed in FPCNN + DWT + PCA + BPNN method is 101, out of which

he actual number of normal sample (H) is 87 and pathological

ample (P) is 14. It is observed that the predicted value of H using

he above method is 87, whereas the predicted value of P is 13 and

ne sample is misclassified as H. On the other hand, in our pro-

osed method, the total number of samples taken is 255 (H = 35

nd P = 220). It is observed that the predicted values are H = 35, P

 219 and one sample is misclassified. The reason is that the num-

er of test samples (H + P = 101) and the pathological samples (P

 14) used are very less and the authors have presented the max-

mum value of CM . Note that the number of pathological instances

P = 220) and the number of test samples (H + P = 255) used in

ur method is more (more than double). We have presented the

um of all CM s obtained from all the cross-validations. In fact, we

ave also obtained a maximum CA of 100%, as shown in Table 3 ,

hich indicates that all the predicted values are equal to the actual

alues with a zero misclassification, using D4 dataset. This is due

o the fact that the incorporation of optimal subset selection via

ested cross-validation helps us to decrease the misclassification

ate. It is observed that the suggested NCVASR method performs

etter as compared to the state-of-the-art method. 

Table 7 presents the results obtained from the AUC analysis of

he FPCNN + DWT + PCA + BPNN and the proposed method using

4. 

The area under receiver operating characteristic curves based

n the trapezoidal rule is used to determine the AUC values. The

UC value varies between 0 (worst performance) and 1 (best per-

ormance). The optimal subset selection strategy helps us to con-

rol the values of TP, TN, FP and FN in such a way that SEN is

ncreasing rapidly. At the same time, 1 − SP E is hardly increasing

ntil SEN reaches a high value. Due to this characteristics, a larger
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Table 8 

p -value comparison of the proposed NCVASR method 

with other method using Friedman test. 

Name of the method p -value 

DWT + self-organizing map 0.0285 

DWT + SVM 0.0285 

DWT + SVM + radial basis function 0.0314 

DWT + PCA + k-NN 0.0209 

DWT + PCA + ANN 0.0209 

DWT + PCA + SVM 0.0285 

Wavelet entropy + NBC 0.0219 

Wavelet packet Shannon entropy + SVM 0.0314 

Wavelet packet Tsallis entropy + SVM 0.0432 

FRFE + Welchs t -test + NBC 0.0314 

FRFE + multi-layer perceptron 0.0432 

Independent component analysis + SVM 0.0012 

Pearsons correlation coefficients + SVM 0.0012 

PCA + SVM 0.0012 

FPCNN + DWT + PCA + BPNN 0.0455 
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area is occupied under the curve and thereby a large AUC value

(close to 1) is achieved by our suggested approach. The results, as

shown in Table 7 , indicate that our method outperforms the FPCNN

+ DWT + PCA + BPNN method in terms of the AUC value. The AUC

value of other methods, as discussed above, are not reported in the

literature. Thus, they are not included in Table 7 for comparison. 

Moreover, for a thorough comparison, we have conducted the

Friedman statistical analysis test with a significance level of 0.05

( Demšar, 2006 ). Table 8 , presents the p -value obtained by perform-

ing the Friedman test between the suggested NCVASR method and

all other methods. 

The results indicate that the proposed method outperforms

(highly significant) all other methods except the Wavelet packet

Shannon entropy + SVM, FRFE + multi-layer perceptron and FPCNN

+ DWT + PCA + BPNN methods. Although it is slightly significant

as compared to the Wavelet packet Shannon entropy + SVM, FRFE

+ multi-layer perceptron and FPCNN + DWT + PCA + BPNN meth-

ods, it provides an improved performance in terms of other perfor-

mance indices, as confirmed from above tables. Additionally, it is

prone to the problems like overfitting and bias results due to the

inclusion of the nested cross-validation technique. 

4. Conclusion 

In this investigation, the aim is to propose a novel NCVASR

method for pathological brain classification. The GLCM is used

to extract the spatial texture features from the brain MR images

(training and test). The training feature vectors are exploited by

the proposed NCVASR method to classify an unknown test brain

MRI sample as normal or pathological. This study has shown that

a subset having N significant training feature vectors is selected

for accurate classification. The value of N is optimized by using the

m × n nested cross-validation technique. The present study makes

several noteworthy contributions: (a) avoids overfitting as well as

underfitting problems, (b) avoids possible bias in the result and

c) adaptively finds the optimal value of N whenever a new test

image arrive. The relevance of the subset selection using nested

cross-validation technique is clearly supported by the current find-

ings. We have also compared the proposed NCVASR with the state-

of-the-art methods for pathological brain classification in terms of

CA, SEN, SPE, CM and AUC . Taken together, these results indicate

that it is superior over all other methods. In addition, the statisti-

cal analysis suggests that there is a significant difference between

the suggested NCVASR method and the other methods. The study

has gone some way towards enhancing our understanding of pa-

rameter selection while avoiding some serious problems such as

overfitting. The authors would like to reiterate the fact that the
dea of cross-validation in sparse representation based classifier is

ery encouraging. A future study investigating its performance to

ifferent medical image databases would be very interesting. 
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