
Detecting Insider Attacks Using Non-negative Matrix Factorization

Jan Platoš, Václav Snášel, Pavel Krömer
Department of Computer Science

VŠB-Technical University of Ostrava
Ostrava, Czech Republic

{jan.platos,vaclav.snasel,pavel.kromer.fei}@vsb.cz

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs), USA

ajith.abraham@ieee.org

Abstract—It is a fact that vast majority of attention is
given to protecting against external threats, which are con-
sidered more dangerous. However, some industrial surveys
have indicated they have had attacks reported internally.
Insider Attacks are an unusual type of threat which are also
serious and very common. Unlike an external intruder, in the
case of internal attacks, the intruder is someone who has
been entrusted with authorized access to the network. This
paper presents a Non-negative Matrix Factorization approach
to detect inside attacks. Comparisons with other established
pattern recognition techniques reveal that the Non-negative
Matrix Factorization approach could be also an ideal candidate
to detect internal threats.

Keywords-non-negative matrix factorization, intrusion detec-
tion

I. INTRODUCTION

One of the important threats to computer systems has
traditionally been the insider attacks. These class of attackers
have a substantial amount of knowledge about the network
architecture, files, systems etc. It has become a practice that
many organizations only focus on protecting the network
from external intruders and as a result insider attacks may
not be discovered for a long period. Internal intruders can
plant trojan horses or browse through the network file
system, overload the system, cause a system crash etc. While
browsing of unauthorized files violates the confidentiality,
trojan horses are a threat to both the integrity and confi-
dentiality of data/system and overloading/crashing directly
affects the availability of the network/system. Unfortunately,
these type of attacks can be extremely difficult to detect or
protect against, without deploying a proper detecting and
prevention mechanism.

Though different computer or network systems may have
different definitions of security, early attempts of the protec-
tion mechanisms include authentication or identification, en-
cryption, access control, etc. The goal of these mechanisms
is to prevent unauthorized users from compromising the
data confidentiality, data and communications integrity, and
assurance against denial-of-service. It has been noticed that
such prevention-based techniques cannot assure the security
of the systems being protected. For example, in the year
2000, the so-called Distributed Denial of Service (DDoS)
attacks stopped several major commercial sites, including

Yahoo and CNN, from functioning normally, though they
were protected by prevention-based techniques. Intrusion
Detection Systems (IDS) were proposed to complement the
prevention-based security measures. An intrusion is defined
to be a violation of the security policy of the system;
intrusion detection thus refers to the mechanisms that are
developed to detect the violation of the system security
policy. Intrusion detection is not introduced to replace the
prevention-based techniques such as authentication and ac-
cess control; instead, it is intended to be used along with
the existing security measures and detect the actions that
bypass the security control of the system. Thus, intrusion
detection is usually considered as a second line of defense
for computer and network systems.

Intrusion detection is defined to be the problem of identi-
fying users or hosts or programs that are using a computer
system without authorization and those who have legitimate
access to the system but are abusing their privileges. Several
types of intrusion detection systems are in use [1], [2],
[3], [4], [5], [6]. Configuring an IDS to detect internal
attacks can be difficult. Part of the IDS challenge lies
in creating a good recognition engines. The reason the
recognition engine needs to be different is due to the fact
that different network users require a different amount of
access to different services, servers, and systems for their
work. Once any attack patterns/behavior are identified, the
system administrators will be able to identify any network
users who pose a threat to network or system security.

Rest of the paper is organized as follows. In Section 2, we
present some theoretical background of non-negative matrix
factorization approach. Experiment details are provided in
Section 3 followed by conclusions in the last Section.

II. NON-NEGATIVE MATRIX FACTORIZATION

Since the amount of audit data that an IDS needs to exam-
ine is very large even for a small network, analysis is difficult
even with computer assistance because extraneous features
can make it harder to detect suspicious behavior patterns.
Complex relationships exist between the features, which are
difficult for humans to discover. IDS must therefore reduce
the amount of data to be processed. This is very important if
real-time detection is desired. Therefore, some form of data



reduction is required for IDS. Reduction can occur in one
of several ways. Data that is not considered useful can be
filtered, leaving only the potentially interesting data. Data
can be grouped or clustered to reveal hidden patterns; by
storing the characteristics of the clusters instead of the data,
overhead can be reduced. Finally, some data sources can be
eliminated using feature selection.

In complex classification domains, some data may hinder
the classification process. Features may contain false correla-
tions, which hinder the process of detecting intrusions. Fur-
ther, some features may be redundant since the information
they add is contained in other features. Extra features can
increase computation time, and can impact the accuracy of
IDS. Feature selection improves classification by searching
for the subset of features, which best classifies the training
data. Various approaches have been used for feature selection
for the design of IDS [1], [6].

Matrix factorization or factor analysis is an important
task helpful in the analysis of high dimensional real world
data. There are several well known methods and algorithms
for factorization of real data but many application areas
including information retrieval, pattern recognition and data
mining require processing of binary rather than real data see
[7], [8], [9].

Non-negative Matrix Factorization (NMF) is really a
class of decompositions whose members are not necessarily
closely related to each other [10], [11]. They share the
property that are designed for datasets in which attribute
values are never negative - and its does not make sense
for the decomposition matrices to contain negative values
either. A side-effect of this non-negativity property is that
the mixing of components that we have seen is one way to
understand decompositions can only be additive.

With the standard vector space model, a set of data S
can be expressed as a matrix V , where m is the number
of attributes and n is the number of documents in S. Each
column Vj of V is an encoding of a document in S and each
entry vij of vector Vj is the value of i-th term with regard
to the semantics of Vj , where i ranges across attributes. The
NMF problem is defined as finding an approximation of V
in terms of some metric (e.g., the norm) by factoring V into
the product WH of two reduced-dimensional matrices W
and H . Each column of W is a basis vector. It contains an
encoding of a semantic space or concept from V and each
column of H contains an encoding of the linear combination
of the basis vectors that approximates the corresponding
column of V . Dimensions of W and H are m × k and
k × n , where k is the reduced rank. Usually k is chosen
to be much smaller than n. Finding the appropriate value
of k depends on the application and is also influenced by
the nature of the collection itself. Common approaches to
NMF obtain an approximation of V by computing a (W ,
H) pair to minimize the Frobenius norm of the difference
V −WH . The matrices W and H are not unique. Usually H

is initialized to zero and W to a randomly generated matrix
where each Wij > 0 and these initial values are improved
with iterations of the algorithm described in [12].

For any given matrix V , matrix W has k columns or basis
vectors that represent k clusters, matrix H has n columns
that represent n documents. A column vector in H has
k components, each of which denotes the contribution of
the corresponding basis vector to that column or document.
The clustering of documents is then performed based on
the index of the highest value of k for each document. For
document i (i = 1 . . . n), if the maximum value is the j-
th entry (j = 1 . . . k), document i is assigned to cluster
j. Thus, NMF can be used to organize data collections
into partitioned structures or clusters directly derived from
the nonnegative factors. Potential applications include the
monitoring, tracking and clustering of semantic features
(topics) and can be used for intrusion detection.

III. EXPERIMENTAL RESULTS

The data for the experiments was prepared by the 1998
DARPA intrusion detection evaluation program by MIT
Lincoln Labs [13]. The original data contains 744 MB data
with 4,940,000 records. The data set has 41 attributes for
each connection record plus one class label. Some features
are derived features, which are useful in distinguishing
normal connection from attacks. These features are either
nominal or numeric.

Some features examine only the connections in the past
two seconds that have the same destination host as the
current connection, and calculate statistics related to protocol
behavior, service, etc. These are called same host features.
Some features examine only the connections in the past two
seconds that have the same service as the current connection
and are called same service features. Some other connection
records were also sorted by destination host, and features
were constructed using a window of 100 connections to the
same host instead of a time window. These are called host-
based traffic features.

Our experiments have three phases namely data reduction,
a training phase and a testing phase. In the data reduction
phase, important variables for real-time intrusion detection
are selected by feature selection. In the training phase, the
matrix factorization method is used to construct a model
using the training data to give maximum generalization
accuracy on the unseen data. The test data is then passed
through the saved trained model to detect intrusions in the
testing phase. The data set for our experiments contains
randomly generated 11982 records having 41 features [14].
The 41 features are labeled as in order as A, B, C, D, E, F,
G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
AA, AB, AC, AD, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AO
and the class label is named as AP.

The training and test set used in the experiments com-
prises of 5092 and 6890 records respectively [1].



Several variants of NMF was tested. We tried 12, 17, 19,
25, 33 and 41 variables and processed 10, 50, 100, 500 and
1000 iterations for each number of variables. The results are
illustrated in Tables I, II, III, IV and V. Since the matrices
W and H were randomly initialized all experiments were
repeated 5 times.

As evident, for 10 iterations we obtained 90% accuracy
and 97% for 50 iterations and almost 100% after 500
iterations. The best ratio between time and precision is
achieved for 50 and 100 iterations. Table V depicts the
results for 1000 iterations. The results after 1000 iterations
are not so good, because almost the same results were
achieved after 100 and 500 iterations and we need less than
3% and 33% of time respectively.

IV. CONCLUSIONS

This paper presented a Non-negative Matrix Factorization
approach to detect inside attacks. Empirical results reveal
that the proposed NMF approach is efficient. It is only
through detecting attacks/patterns and keeping logs un-
corrupted that insider attacks can be minimized. Although
insider attacks pose some unique challenges for security
administrators, our research reveals that they can be easily
detected by a well designed IDS. It is also important that
IDS itself must be protected against attacks.

REFERENCES

[1] S. Chebrolu, A. Abraham, and J. P. Thomas, “Hybrid fea-
ture selection for modeling intrusion detection systems,” in
ICONIP, ser. Lecture Notes in Computer Science, N. R. Pal,
N. Kasabov, R. K. Mudi, S. Pal, and S. K. Parui, Eds., vol.
3316. Springer, 2004, pp. 1020–1025.

[2] S. Chavan, K. Shah, N. Dave, S. Mukherjee, A. Abraham,
and S. Sanyal, “Adaptive neuro-fuzzy intrusion detection
systems,” in ITCC (1). IEEE Computer Society, 2004, pp.
70–74.

[3] S. Mukkamala, A. H. Sung, and A. Abraham, “Modeling
intrusion detection systems using linear genetic programming
approach,” in IEA/AIE, ser. Lecture Notes in Computer Sci-
ence, R. Orchard, C. Yang, and M. Ali, Eds., vol. 3029.
Springer, 2004, pp. 633–642.

[4] S. Mukkamala, A. Sung, and A. Abraham, “Intrusion detec-
tion using ensemble of soft computing paradigms,” in Third
International Conference on Intelligent Systems Design and
Applications, Intelligent Systems Design and Applications,
Advances in Soft Computing. Springer Verlag, Germany,
2003, pp. 239–248.

[5] S. Mukkamala, A. H. Sung, A. Abraham, and V. Ramos, “In-
trusion detection systems using adaptive regression splines,”
in ICEIS (3), 2004, pp. 26–33.

[6] V. Snasel, J. Platos, P. Kromer, and A. Abraham, “Matrix
factorization approach for feature deduction and design of
intrusion detection systems,” in FOURTH INTERNATIONAL
SYMPOSIUM ON INFORMATION ASSURANCE AND SE-
CURITY, PROCEEDINGS, M. Rak, A. Abraham, and V. Ca-
sola, Eds., 2008, pp. 172–179, 4th International Symposium
on Information Assurance and Security, Napoli, ITALY, SEP
08-10, 2008.

[7] D. Húsek, P. Moravec, V. Snásel, A. A. Frolov, H. Rezanková,
and P. Polyakov, “Comparison of neural network boolean
factor analysis method with some other dimension reduction
methods on bars problem,” in PReMI, ser. Lecture Notes in
Computer Science, A. Ghosh, R. K. De, and S. K. Pal, Eds.,
vol. 4815. Springer, 2007, pp. 235–243.

[8] P. Moravec and V. Snasel, “Dimension reduction methods
for image retrieval,” in ISDA ’06: Proceedings of the Sixth
International Conference on Intelligent Systems Design and
Applications (ISDA’06). Washington, DC, USA: IEEE
Computer Society, 2006, pp. 1055–1060.

[9] V. Snásel, D. Húsek, A. A. Frolov, H. Rezanková, P. Moravec,
and P. Polyakov, “Bars problem solving - new neural network
method and comparison,” in MICAI, 2007, pp. 671–682.

[10] L. Eldén, Matrix Methods in Data Mining and Pattern Recog-
nition. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2007.

[11] D. Skillicorn, Understanding Complex Datasets: Data Mining
with Matrix Decomposition, ser. Data Mining and Knowledge
Discovery. Chapman & Hall/CRC, May 2007.

[12] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in NIPS, 2000, pp. 556–562. [Online].
Available: citeseer.ist.psu.edu/lee01algorithms.html

[13] “Mit lincoln laboratory.” [Online]. Available:
http://www.ll.mit.edu/IST/ideval/

[14] “Kdd cup 99 intrusion detection data set.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data 10 percent.gz



Table I
EMPIRICAL RESULTS FOR 10 ITERATIONS

Teaching Testing
Var. Acc.[%] Time[s] FP[%] FN[%] Acc.[%] Time[s] FP[%] FN[%]
12 72.66 0.4 27.28 0.06 80.23 0.34 19.72 0.05
17 78.15 0.62 21.77 0.07 87.92 0.55 12.01 0.07
19 81.69 0.74 18.23 0.09 90.68 0.62 9.22 0.10
25 79.86 0.98 20.03 0.11 87.51 0.82 12.44 0.06
33 82.38 1.39 17.52 0.10 90.56 1.11 9.39 0.05
41 84.64 1.79 15.23 0.13 90.32 1.52 9.61 0.07

Table II
EMPIRICAL RESULTS FOR 50 ITERATIONS

Teaching Testing
Var. Acc.[%] Time[s] FP[%] FN[%] Acc.[%] Time[s] FP[%] FN[%]
12 87.22 2.79 12.66 0.12 92.63 4.17 7.28 0.09
17 89.81 4.19 10.12 0.07 94.46 7.48 5.46 0.08
19 89.76 4.32 10.13 0.12 93.54 6.23 6.34 0.12
25 91.08 6.04 8.85 0.07 91.52 8.72 8.40 0.07
33 94.49 9.46 5.39 0.12 96.27 11.5 3.57 0.16
41 95.31 13.27 4.56 0.13 96.87 17.77 3.00 0.13

Table III
EMPIRICAL RESULTS FOR 100 ITERATIONS

Teaching Testing
Var. Acc.[%] Time[s] FP[%] FN[%] Acc.[%] Time[s] FP[%] FN[%]
12 90.20 6.11 9.68 0.12 94.68 8.6 5.22 0.10
17 90.07 11 9.86 0.07 94.64 17.66 5.27 0.09
19 89.44 11.41 10.46 0.10 94.37 17.05 5.54 0.09
25 92.36 15.49 7.56 0.08 95.90 23.48 4.00 0.10
33 94.12 22.04 5.79 0.09 93.99 31.09 5.87 0.15
41 95.25 27.94 4.65 0.09 97.12 35.93 2.74 0.14

Table IV
EMPIRICAL RESULTS FOR 500 ITERATIONS

Teaching Testing
Var. Acc.[%] Time[s] FP[%] FN[%] Acc.[%] Time[s] FP[%] FN[%]
12 87.63 61.48 12.29 0.08 93.37 172.09 6.54 0.09
17 88.17 84.15 11.72 0.11 92.75 215.15 7.19 0.06
19 89.15 104.58 10.79 0.06 94.51 249.7 5.40 0.09
25 91.88 135.88 8.04 0.08 92.18 334.69 7.73 0.09
33 96.31 164.71 3.53 0.15 97.62 371.67 2.21 0.17
41 99.60 231.9 0.20 0.20 99.66 574.89 0.12 0.22

Table V
EMPIRICAL RESULTS FOR 1000 ITERATIONS

Teaching Testing
Var. Acc.[%] Time[s] FP[%] FN[%] Acc.[%] Time[s] FP[%] FN[%]
12 84.16 191.66 15.76 0.09 92.21 416.08 7.70 0.08
17 89.10 263.78 10.82 0.08 93.77 644.63 6.15 0.08
19 87.82 306.83 12.11 0.07 93.71 736.58 6.21 0.07
25 91.29 371.79 8.63 0.08 94.10 904.07 5.82 0.08
33 95.54 439.17 4.31 0.15 96.27 1187.12 3.57 0.16
41 98.97 609.13 0.83 0.19 98.44 1585.49 1.34 0.22


