
Hybrid Flexible Neural-Tree-Based
Intrusion Detection Systems
Yuehui Chen,1,† Ajith Abraham,2,* Bo Yang1,‡

1School of Information Science and Engineering, Jinan University,
Jinan 250022, P.R. China
2School of Computer Science and Engineering, Chung-Ang University,
Seoul, Korea

An intrusion is defined as a violation of the security policy of the system, and, hence, intrusion
detection mainly refers to the mechanisms that are developed to detect violations of system
security policy. Current intrusion detection systems ~IDS! examine all data features to detect
intrusion or misuse patterns. Some of the features may be redundant or contribute little ~if any-
thing! to the detection process. The purpose of this study is to identify important input features
in building an IDS that is computationally efficient and effective. This article proposes an IDS
model based on a general and enhanced flexible neural tree ~FNT!. Based on the predefined
instruction/operator sets, a flexible neural tree model can be created and evolved. This frame-
work allows input variables selection, overlayer connections, and different activation functions
for the various nodes involved. The FNT structure is developed using an evolutionary algo-
rithm, and the parameters are optimized by a particle swarm optimization algorithm. Empirical
results indicate that the proposed method is efficient. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

Traditional prevention techniques such as user authentication, data encryp-
tion, avoiding programming errors, and firewalls are used as the first line of
defense for computer security. Recently, intrusion detection systems ~IDS! have
been used in monitoring attempts to break security, which provides important
information for timely countermeasures. Intrusion detection is classified into two
types: misuse intrusion detection and anomaly intrusion detection. Misuse intru-
sion detection uses well-defined patterns of the attack that exploit weaknesses in
the system and application software to identify the intrusions. Anomaly intrusion
detection identifies deviations from the normal usage behavior patterns to iden-
tify the intrusion.

*Author to whom all correspondence should be addressed: e-mail: ajith.abraham@ieee.org.
†e-mail: yhchen@ujn.edu.cn.
‡e-mail: yangbo@ujn.edu.cn.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 22, 337–352 ~2007!
© 2007 Wiley Periodicals, Inc. Published online in Wiley InterScience
~www.interscience.wiley.com!. • DOI 10.1002/int.20203

Various data mining techniques have been applied to intrusion detection
because they have the advantage of discovering useful knowledge that describes a
user’s or program’s behavior from large audit data sets. This article proposes a
flexible neural tree ~FNT!1 for selecting the input variables and detection of net-
work intrusions. Based on the predefined instruction/operator sets, a flexible neu-
ral tree model can be created and evolved. FNT allows input variables selection,
overlayer connections, and different activation functions for different nodes. In
our previous work, the hierarchical structure was evolved using the probabilistic
incremental program evolution algorithm ~PIPE!2 with specific instructions. In
this work, the hierarchical structure is evolved using a tree-structure-based evolu-
tionary algorithm. The fine-tuning of the parameters encoded in the structure is
accomplished using particle swarm optimization ~PSO!.3 The proposed method
interleaves both optimizations. Starting with random structures and corresponding
parameters, it first tries to improve the structure and then as soon as an improved
structure is found, it fine-tunes its parameters. It then goes back to improving the
structure again and fine-tunes the structure and rules’ parameters. This loop con-
tinues until a satisfactory solution is found or a time limit is reached.

2. INTRUSION DETECTION SYSTEMS

Data mining approaches for intrusion detection were first implemented in
mining audit data for automated models for intrusion detection.4 The raw data are
first converted into ASCII network packet information, which in turn is converted
into connection level information. These connection level records contain connec-
tion features like service, duration, and so forth. Data mining algorithms are applied
to these data to create models to detect intrusions.

Data mining approaches for intrusion detection were first implemented in
Mining Audit Data for Automated Models for Intrusion Detection.5 Raw data are
converted into ASCII network packet information, which in turn is converted into
connection level information. These connection level records contain within con-
nection features like service, duration, and so forth. Data mining algorithms are
applied to these data to create models to detect intrusions. Neural networks have
been used both in anomaly intrusion detection and in misuse intrusion detection.
In the first approach of neural networks6 for intrusion detection, the system learns
to predict the next command based on a sequence of previous commands by a
user. Support vector machines ~SVMs! have proven to be a good candidate for
intrusion detection because of their training speed and scalability. Besides SVMs
are relatively insensitive to the number of data points, and the classification com-
plexity does not depend on the dimensionality of the feature space, so they can
potentially learn a larger set of patterns and scale better than neural networks.7

Neuro-fuzzy computing is a popular framework for solving complex problems.
An adaptive neuro-fuzzy IDS is proposed by Shah et al.8 Multivariate Adaptive
Regression Splines ~MARS! are an innovative approach that automates the build-
ing of accurate predictive models for continuous and binary dependent variables.9

They excel at finding optimal variable transformations and interactions and the

338 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

complex data structure that often hides in high-dimensional data. An IDS based on
MARS technology is proposed in Ref. 10. Linear Genetic Programming ~LGP! is
a variant of the conventional Genetic Programming ~GP! technique that acts on
linear genomes. Its main characteristics in comparison to tree-based GP lie in the
fact that computer programs are evolved at the machine code level, using lower
level representations for the individuals. This can tremendously hasten the evolu-
tion process as, no matter how an individual is initially represented, finally it always
has to be represented as a piece of machine code, as fitness evaluation requires
physical execution of the individuals. LGP based IDS is presented in Ref. 11.

Because the amount of audit data that an IDS needs to examine is very large
even for a small network, analysis is difficult even with computer assistance because
extraneous features can make it harder to detect suspicious behavior patterns. IDS
must therefore reduce the amount of data to be processed. This is very important if
real-time detection is desired. Reduction can occur in one of several ways. Data
that are not considered useful can be filtered, leaving only the potentially interest-
ing data. Data can be grouped or clustered to reveal hidden patterns; by storing the
characteristics of the clusters instead of the data, overhead can be reduced. Finally,
some data sources can be eliminated using feature selection. In the literature, there
are some related works for feature reduction in IDS. A support vector machine
technique is used to select the important features.12 Feature deduction using the
Markov blanket model and decision trees is presented in Ref. 13.

The novelty of this article is in the usage of the flexible neural tree model for
selecting the important features and for detecting intrusions.

3. THE FLEXIBLE NEURAL TREE MODEL

In this research, a tree-structure-based encoding method with a specific instruc-
tion set is selected for representing a flexible neutron tree ~FNT! model. The rea-
son for choosing the representation is that the tree can be created and evolved
using the existing or modified tree-structure-based approaches, that is, GP, PIPE,
ant programming ~AP!, and so forth.

3.1. Flexible Neuron Instructor

The function set F and terminal instruction set T used for generating an FNT
model are described as follows:

S � F �T � $�2,�3, . . . ,�N %� $x1, . . . , xn % ~1!

where �i ~i � 2,3, . . . , N ! denote nonleaf nodes’ instructions and take i argu-
ments. x1, x2, . . . , xn are leaf nodes’ instructions and take no other arguments. The
output of a nonleaf node is calculated as a flexible neuron model ~see Figure 1!.
From this point of view, the instruction �i is also called a flexible neuron operator
with i inputs.

In the process of creating a neural tree, if a nonterminal instruction, that is, �i

~i � 2,3,4, . . . , N ! is selected, i real values are randomly generated and used for

NEURAL-TREE-BASED IDS 339

International Journal of Intelligent Systems DOI 10.1002/int

representing the connection strength between the node �i and its children. In addi-
tion, two adjustable parameters, ai and bi , are randomly created as flexible activa-
tion function parameters. Some examples of flexible activation functions are shown
in Table I.

For developing the IDS, the following flexible activation function is used:

f ~ai , bi , x! � e�~~x�ai! /bi !
2

~2!

The output of a flexible neuron �n can be calculated as follows. The total
excitation of �n is

netn � (
j�1

n

wj * xj ~3!

where xj~ j � 1,2, . . . , n! are the inputs to node �n . The output of the node �n is
then calculated by

outn � f ~an , bn , netn !� e�~~netn�an! /bn !
2

~4!

A typical flexible neuron operator and a neural tree model are illustrated in
Figures 1 and 2. The overall output of the flexible neural tree can be computed
from left to right by the depth-first method, recursively.

3.2. Fitness Function

A fitness function maps FNT to scalar, real-valued fitness values that reflect
the FNT’s performances on a given task. First, the fitness functions should clearly
reflect the classification error measures. A secondary non-user-defined objective
for which algorithm always optimizes FNTs is the size of FNT usually measured
by number of nodes. Among FNTs having equal fitness values, smaller FNTs are

Figure 1. A flexible neuron operator.

Table I. The activation functions.

Gaussian function f ~x!� exp~�~~x � a!2/b2! !

Flexible unipolar sigmoid function f ~x, a!� 26a 6/~1 � e�26a 6x !

Flexible bipolar sigmoid function f ~x, a!� ~1 � e�2xa !/a~1 � e�2xa !

340 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

always preferred. A fitness function formulating the sum of positive and negative
classification errors is used to design the IDS.

3.3. Tree Structure Optimization

Finding an optimal or near optimal neural tree is formulated as a product of
evolution. A number of neural tree variation operators are developed as follows:

3.3.1. Mutation

Four different mutation operators were employed to generate offspring from
the parents. These mutation operators are as follows:

~1! Changing one terminal node: Randomly select one terminal node in the neural tree
and replace it with another terminal node.

~2! Changing all the terminal nodes: Select each and every terminal node in the neural
tree and replace it with another terminal node.

~3! Growing: Select a random leaf in the hidden layer of the neural tree and replace it with
a newly generated subtree.

~4! Pruing: Randomly select a function node in the neural tree and replace it with a termi-
nal node.

Following the work of Chellapilla,14 the neural tree operators were applied
to each of the parents to generate an offspring using the following steps: ~a! A

Figure 2. A typical representation of a neural tree with function instruction set F � $�2,�3,
�4,�5,�6 % and terminal instruction set T � $x1, x2, x3 % .

NEURAL-TREE-BASED IDS 341

International Journal of Intelligent Systems DOI 10.1002/int

Poission random number N, with mean l, was generated. ~b! N random mutation
operators were uniformly selected with replacement from above four mutation oper-
ator set. ~c! These N mutation operators were applied in sequence one after the
other to the parents to get the offspring.

3.3.2. Crossover

Select two neural trees randomly and select one nonterminal node in the hid-
den layer for each neural tree randomly, and then swap the selected subtree. The
crossover operator is implemented with a predefined probability 0.3 in this study.

3.3.3. Selection

Evolutionary programming ~EP! style tournament selection was applied to
select the parents for the next generation.14 Pairwise comparison is conducted for
the union of m parents and m offspring. For each individual, q opponents are cho-
sen uniformly at random from all the parents and offspring. For each comparison,
if the individual’s fitness is no smaller than the opponent’s, it receives a selection.
Select m individuals out of parents and offspring that have the most wins to form
the next generation. This is repeated for each generation until a predefined number
of generations is reached or when the best structure is found.

3.4. Parameter Optimization with PSO

Particle swarm optimization ~PSO!3,15 conducts searches using a population
of particles that correspond to individuals in an evolutionary algorithm. A popula-
tion of particles is randomly generated initially. Each particle represents a poten-
tial solution and has a position represented by a position vector xi . A swarm of
particles moves through the problem space, with the moving velocity of each par-
ticle represented by a velocity vector vi . At each time step, a function fi represent-
ing a quality measure is calculated by using xi as input. Each particle keeps track
of its own best position, which is associated with the best fitness it has achieved so
far in a vector pi . Furthermore, the best position among all the particles obtained
so far in the population is kept track of as pg . In addition to this global version,
another version of PSO keeps track of the best position among all the topological
neighbors of a particle.

At each time step t, by using the individual best position, pi , and the global
best position, pg~t!, a new velocity for particle i is updated by

vi~t � 1! � vi~t!� c1f1~pi~t!� xi~t!!� c2f2~pg~t!� xi~t!! ~5!

where c1 and c2 are positive constant and f1 and f2 are uniformly distributed
random numbers in @0,1# . The term vi is limited to the range of 6vmax . If the
velocity violates this limit, it is set to its proper limit. Changing velocity this way
enables the particle i to search around its individual best position, pi , and global

342 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

best position, pg . Based on the updated velocities, each particle changes its posi-
tion according to the following equation:

xi~t � 1! � xi~t!� vi~t � 1! ~6!

Based on Equations 7 and 8, the population of particles tend to cluster together
with each particle moving in a random direction. Most attempts to improve the
velocity update formula Equation 7 can be captured by the following formula3:

vi~t � 1! � x~vvi~t!� c1f1~pi~t!� xi~t!!� c2f2~pg~t!� xi~t!!! ~7!

where two new parameters, x and v, are also real numbers. The parameter x con-
trols the magnitude of v, whereas the inertia weight v weights the magnitude of
the old velocity vi~t! in the calculation of the new velocity vi~t � 1!.

3.5. Procedure of the General Learning Algorithm

The general learning procedure for constructing the FNT model can be
described as follows.

~1! Create an initial population randomly ~FNT structures and its corresponding
parameters!.

~2! Structure optimization is achieved by the neural tree variation operators as described
in Subsection 3.3.

~3! If a better structure is found, then go to step 4; otherwise go to step 2.
~4! Parameter optimization is achieved by the PSO algorithm as described in Subsection

3.4. In this stage, the architecture of FNT model is fixed, and it is the best tree devel-
oped during the end of run of the structure search. The parameters ~weights and flex-
ible activation function parameters! encoded in the best tree formulate a particle. The
PSO algorithm works as follows:
~a! Initial population is generated randomly. The learning parameters c1 and c2 in PSO

should be assigned in advance.
~b! The objective function value is calculated for each particle.
~c! Modification of search point. The current search point of each particle is changed

using Equations 7 and 6.
~d! If the maximum number of generations is reached or no better parameter vector is

found for a significantly long time ~100 steps!, then stop; otherwise go to step ~b!.
~5! If the maximum number of local search is reached or no better parameter vector is

found for a significantly long time, then go to step 6; otherwise go to step 4.
~6! If a satisfactory solution is found, then the algorithm is stopped; otherwise go to step 2.

4. FEATURE SELECTION AND CLASSIFICATION
USING FNT PARADIGMS

4.1. The Data Set

The data for our experiments were prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Lab. The data set contains 24 attack
types that could be classified into four main categories, namely, Denial of Service
~DOS!, Remote to User ~R2L!, User to Root ~U2R!, and Probing. The original

NEURAL-TREE-BASED IDS 343

International Journal of Intelligent Systems DOI 10.1002/int

data contain 744 MB data with 4,940,000 records. The data set has 41 attributes
for each connection record plus one class label. Some features are derived fea-
tures, which are useful in distinguishing normal from attacks. These features are
either nominal or numeric. Some features examine only the connection in the past
two seconds that have the same destination host as the current connection, and
calculate statistics related to protocol behavior, service, and so forth. These are
called same host features. Some features examine only the connections in the past
two seconds that have the same service as the current connection and are called
same service features. Some other connection records were also stored by the des-
tination host, and features were constructed using a window of 100 connections to
the same host instead of a time window. These are called host-based traffic fea-
tures. R2L and U2R attacks do not have any sequential patterns like DOS and
Probe because the former attacks have the attacks embedded in the data packets
whereas the later attacks have many connections in a short amount of time. So
some features that look for suspicious behavior in the data packets such as number
of failed logins are constructed and these are called contents features. The data for
our experiments contain 11,982 randomly generated records having 41 features.16

The labels of the 41 features and their corresponding networks data features are
shown in Table II.

This data set has five different classes, namely Normal, DOS, R2L, U2R, and
Probe. The training and test comprise 5092 and 6890 records, respectively.
All the IDS models were trained and tested with the same set of data. As the data
set has five different classes, we performed a five-class binary classification. The

Table II. Network data feature labels.

Label Feature Label Feature

x1 duration x2 protocol-type
x3 service x4 flag
x5 src_bytes x6 dst_bytes
x7 land x8 wrong_ fragment
x9 urgent x10 hot
x11 num_ failed_logins x12 logged_in
x13 num_compromised x14 root_shell
x15 su_atempted x16 num_root
x17 num_ file_creations x18 num_shells
x19 num_acess_ files x20 num_outbound_cmds
x21 is_host_login x22 is_guest_login
x23 count x24 srv_count
x25 serror_rate x26 srv_serror_rate
x27 rerror_rate x28 srv_rerror_rate
x29 smae_srv_rate x30 diff_srv_rate
x31 srv_diff_host_rate x32 dst_host_count
x33 dst_host_srv_count x34 dst_host_same_srv_rate
x35 dst_host_diff_srv_rate x36 dst_host_same_srv_ port_rate
x37 dst_host_srv_diff_host_rate x38 dst_host_serror_rate
x39 dst_host_srv_serror_rate x40 dst_host_rerror_rate
x41 dst_host_srv_rerror_rate

344 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

normal data belong to class 1, Probe belong to class 2, DOS belong to class 3,
U2R belong to class 4, and R2L belong to class 5.

The initial parameters used for each experiment are listed in Table III.

4.2. Feature/Input Selection with FNT

It is often a difficult task to select variables ~features! for the classification
problem, especially when the feature space is large. A fully connected NN classi-
fier usually cannot do this. In the perspective of the FNT framework, the nature of
the model construction procedure allows the FNT to identify important input fea-
tures in building an IDS that is computationally efficient and effective.

The mechanisms of input selection in the FNT constructing procedure are as
follows. ~1! Initially the input variables are selected to formulate the FNT model
with same probabilities. ~2! The variables that have more contribution to the objec-
tive function will be enhanced and have a high opportunity to survive at the next
generation by a evolutionary procedure. ~3! The evolutionary operators, that is,
crossover and mutation, provide an input selection method by which the FNT should
select appropriate variables automatically.

4.3. Modeling IDS Using FNT with 41 Input-Variables

For this simulation, the original 41 input variables are used for constructing an
FNT model. An FNT classifier was constructed using the training data, and then the
classifier was used on the test data set to classify the data as an attack or normal
data. The instruction sets used to create an optimal FNT classifier are S � F �T �
$�5, . . . ,�20 %�$x1, x2, . . . , x41%, where xi ~i�1,2, . . . ,41! denotes the 41 features.

The required number of iterations for structure and parameter optimization
for each of the FNT classifiers are listed in Table IV. The optimal FNTs for classes
1–5 are shown in Figures 3–5. It should be noted that the important features for
constructing the FNT model were formulated in accordance with the procedure
mentioned in the previous section. These important variables are shown in Table V.
Table VIII, below, depicts the detection performance of the FNT by using the orig-
inal 41 variable data set.

Table III. Parameters used in the flexible
neural tree model.

Parameter Initial values

Population size PS 100
Crossover probability 0.3
Opponent q in tournament selection 30
Maximum local search steps 2000
Terminate steps in local search 100
Initial connection weights rand@�1,1#
Initial parameters ai and bi rand@0,1#

NEURAL-TREE-BASED IDS 345

International Journal of Intelligent Systems DOI 10.1002/int

4.4. Modeling IDS with Input Variables Selected
by the Decision Tree Approach

The important variables for intrusion detection were decided by their contri-
bution to the construction of the decision tree.13 Variable rankings were generated
in terms of percentages. The variables that had 0.00% rankings and were consid-
ered only the primary splitters were eliminated.13 This resulted in a reduced
12-variable data set with x3, x5, x6, x12, x23, x24, x25, x28, x31, x32, x33, and x35

as variables. Further, the FNT classifier was constructed using the 12-variable data
set ~training data!, and then the test data were passed through the save trained
model. The instruction sets used to create an optimal neural tree model are S �
F �T � $�2, . . . ,�10 %�$x3, x5, x6, x12, x23, x24, x25, x28, x31, x32, x33, x35 %.

The iterations for structure and parameter optimization for each of the FNT
classifiers are listed in Table VI. The optimal FNTs for classes 1–5 are shown in
Figures 6–8. It should be noted that the important features for constructing the
FNT model were recognized automatically one more time. The important vari-
ables selected by the FNT model are shown in Table VII. Table VIII depicts the
performance of the FNT by using the reduced 12-variable data set.

Table IV. Iterations for structure and
parameter optimization.

Class
Structure

optimization
Parameter

optimization

Class 1 95 1789
Class 2 89 1602
Class 3 91 1539
Class 4 48 1892
Class 5 64 1920

Figure 3. The evolved FNT for class 1 and class 2 with 41 input variables.

346 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

Figure 4. The evolved FNT for class 3 and class 4 with 41 input variables.

Figure 5. The evolved FNT for class 5 with 41 input variables.

Table V. The important features selected by the FNT
algorithm.

Class Important variables

Class 1 x3, x11, x21, x40

Class 2 x1, x3, x12, x18, x20, x21, x23, x26, x27, x31, x37, x41

Class 3 x1, x8, x10, x11, x16, x17, x20, x12, x23, x28, x29, x31

Class 4 x11, x14, x17, x28, x29, x32, x36, x38

Class 5 x1, x3, x11, x12, x13, x18, x20, x22, x25, x38

Table VI. The iterations in structure and
parameter optimization.

Class
Structure

optimization
Parameter

optimization

Class 1 45 1745
Class 2 49 1403
Class 3 31 1547
Class 4 28 1678
Class 5 54 1834

NEURAL-TREE-BASED IDS 347

International Journal of Intelligent Systems DOI 10.1002/int

4.5. Modeling IDS Using Neural Networks
without Input Variable Selection

For comparison purposes, a neural network classifier trained by a PSO algo-
rithm with flexible bipolar sigmoid activation functions was constructed using the
same training data sets, and then the neural network classifier was used on the test
data set to detect the different types of attacks. All the input variables were used
for the experiments.

Before describing details of the algorithm for training NN classifier, the issue
of coding is presented. Coding concerns the way the weights and the flexible acti-
vation function parameters of NN are represented by individuals or particles. A
float point coding scheme is adopted here. For NN coding, suppose there are M
nodes in a hidden layer and one node in the output layer and n input variables; then
the number of total weights is n * M � M * 1, the number of thresholds is M � 1,

Figure 6. The evolved FNT for classes 1 and 2 with 12 input variables.

Figure 7. The evolved FNT for class 3 and class 4 with 12 input variables.

348 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

and the number of flexible activation function parameters is M � 1; therefore the
total number of free parameters in an NN to be coded is n * M � M � 2~M � 1!.
These parameters are coded into an individual or particle orderly.

The simple loop of the proposed training algorithm for neural network is as
follows:

S1 Initialization. Initial population is generated randomly. The learning param-
eters c1 and c2 in PSO should be assigned in advance.

S2 Evaluation. The objective function value is calculated for each particle.

S3 Modification of search point. The current search point of each particle is
changed using Equations 7 and 6.

S4 If maximum number of generations is reached or no better parameter vector
is found for a significantly long time ~100 steps!, then stop; otherwise go to
step S2.

Figure 8. The evolved FNT for class 5 with 12 input variables.

Table VII. Important features for 12-variable
data set.

Class Important variables

Class 1 x3, x5, x6, x12, x23, x28, x32, x33, x35

Class 2 x3, x5, x6, x12, x24, x28, x31, x32, x33, x35

Class 3 x5, x6, x12, x23, x24, x28, x31, x32, x33

Class 4 x3, x5, x6, x12, x25, x31, x33, x35

Class 5 x3, x12, x23, x25, x28, x31, x33, x35

NEURAL-TREE-BASED IDS 349

International Journal of Intelligent Systems DOI 10.1002/int

Table IX depicts the performance of the neural network by using the original
41-variable data set and the 12-variable reduced data set.

5. CONCLUSIONS

In this article, we presented a Flexible Neural Tree ~FNT! model for Intru-
sion Detection Systems ~IDS! with a focus on improving the intrusion detection
performance by reducing the input features and hybrid approaches for combining
base classifiers. We have also demonstrated the performance using different reduced
data sets. As evident from Tables VIII and IX, the proposed flexible neural tree
approach seems to be very promising. The FNT model was able to reduce the
number of variables to 4, 12, 12, 8, and 10 ~using 41 input variables! and 9, 10, 9,
8, and 8 ~using 12 input variables! for classes 1–5, respectively. Using 41 vari-
ables, the FNT model gave the best accuracy for the detection of most of the classes
~except U2R!. Using 41 input variables, although the hybrid model seems to work
very well for most of the attack classes, the direct NN classifier outperformed the
FNT approach for U2R attack. For the 12-variable reduced data set, the direct NN
approach outperformed the FNT model for DOS, U2R, and R2L attacks.

As suggested in the literature,17 by increasing the weight of false negative
errors, the detection accuracy could be improved. In our research, we avoided any
such bias toward any particular error. Instead a 0.5 bias was provided for both
false positive and negative errors just to measure the neutral performance of the

Table VIII. Detection performance using
FNT model with 41 and 12 input variables.

Attack class
41-variable

data set
12-variable

data set

Normal 99.19% 97.98%
Probe 98.39% 97.46%
DOS 98.75% 94.63%
U2R 99.70% 99.76%
R2L 99.09% 98.99%

Table IX. Detection performance using the NN classifier
with 41 and 12 input variables.

Attack class
41-variable data set
~original data!

12-variable data set
~decision tree reduced data!

Normal 95.69% 95.59%
Probe 95.53% 95.08%
DOS 90.41% 100%
U2R 100% 100%
R2L 98.10% 99.25%

350 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

classification algorithm. The achieved false positive/negative errors using the
41-variable data set by the FNT algorithm are depicted in Table X.

One of the problems with most of the current intrusion detection systems is
the alarming rate of false positives. It is to be noted that the proposed FNT model
could detect the normal mode within 99.19% accuracy by using only four input
variables. This field is developing continuously. More data mining techniques
should be investigated and their efficiency should be evaluated as intrusion detec-
tion models.

Acknowledgments

This research was partially supported by the National Natural Science Foun-
dation of China ~NSFC!, Project No.69902005, and Provincial Natural Science
Foundation of Shandong, Project No. Y2001G09.

References

1. Chen Y, Yang B, Dong J, Abraham A. Time-series forcasting using flexible neural tree
model. Inform Sci 2005;174:219–235.

2. Salustowicz RP, Schmidhuber J. Probabilistic incremental program evolution. Evol Com-
put 1997;2:123–141.

3. Kennedy J. Particle swarm optimization. In: Proc IEEE Int Conf on Neural Networks,
vol IV; 1995. pp 1942–1948.

4. Barbara D, Couto J, Jajodia S, Wu N. ADAM: A testbed for exploring the use of data
mining in intrusion detection. SIGMOD Record 2001;30:15–24.

5. Lee W. A data mining framework for constructing features and models for intrusion detec-
tion systems. PhD thesis, Computer Science Department, Columbia University, June 1999.

6. Fox KL, Henning RR, Reed JH, Simonian R. A neural network approach towards intru-
sion detection. In: Proc 13th National Computer Security Conf, Washington, DC; 1990.
pp 125–134.

7. Mukkamala S, Sung AH, Abraham A. Intrusion detection using ensemble of soft comput-
ing paradigms. In: Proc Third Int Conf on Intelligent Systems Design and Applications,
Advances in Soft Computing. Berlin: Springer Verlag; 2003. pp 239–248.

8. Shah K, Dave N, Chavan S, Mukherjee S, Abraham A, Sanyal S. Adaptive neuro-fuzzy
intrusion detection system. In: IEEE Int Conf on Information Technology: Coding and

Table X. The false positive/negative errors
using the 41-variable data set by the FNT
algorithm.

Attack class
False

positive error
False

negative error

Normal 0.0581% 0.7837%
Probe 1.3943% 0.2160%
DOS 0.6241% 0.6241%
U2R 0.2177% 0.0726%
R2L 0.7547% 0.1597%

NEURAL-TREE-BASED IDS 351

International Journal of Intelligent Systems DOI 10.1002/int

Computing ~ITCC’04!, vol 1. Los Alamitos, CA: IEEE Computer Society Press; 2004.
pp 70–74.

9. Friedman JH. Multivariate adaptative regression splines. Ann Stat 1991;19:1–141.
10. Mukkamala S, Sung AH, Abraham A, Ramos V. Intrusion detection systems using adap-

tive regression splines. In: Seruca I, Cordeiro J, Hammoudi S, Filipe J, editors. Sixth Int
Conf on Enterprise Information Systems, ICEIS’04, Portugal, Enterprise Information Sys-
tems VI. Berlin: Springer-Verlag; 2006. pp 211–218.

11. Mukkamala S, Sung AH, Abraham A. Modeling intrusion detection systems using linear
genetic programming approach. In: Orchard R, Yang C, Ali M, editors. Proc 17th Int Conf
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
Innovations in Applied Artificial Intelligence. Lecture Notes in Computer Science 3029.
Berlin: Springer Verlag; 2004. pp 633– 642.

12. Mukkamala S, Sung AH. Feature selection for intrusion detection using neural networks
and support vector machines. Transport Res Rec 2003;1822:33–39.

13. Chebrolu S, Abraham A, Thomas JP. Feature detection and ensemble design of intrusion
detection systems. Comput Secur 2005;24:295–307.

14. Chellapilla K. Evolving computer programs without subtree crossover. IEEE Trans Evol
Comput, 1997;1:209–216.

15. Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y. A particle swarm optimi-
zation for reactive power and voltage control considering voltage security assessment.
IEEE Trans Power Syst 2000;15:1232–1239.

16. KDD cup 99. Available at: http://www.kdnuggets.com/datasets/kddcup.html.
17. Joo D, Hong T, Han I. The neural network models for IDS based on the asymmetric costs

of false negative errors and false positive errors. Expert Syst Appl 2003;25:69–75.

352 CHEN, ABRAHAM, AND YANG

International Journal of Intelligent Systems DOI 10.1002/int

