
Information Sciences 181 (2011) 2370–2391
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Dynamic multi-objective optimization based on membrane computing
for control of time-varying unstable plants

Liang Huang a, Il Hong Suh b,⇑, Ajith Abraham c

a College of Information & Electronic Engineering, Zhejiang Gongshang University, PR China
b Intelligence and Communications for Robots Laboratory, Department of Computer Science and Engineering, College of Engineering,
Hanyang University, Seoul, Republic of Korea
c Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence (SNIRE), Auburn, WA 98071, USA

a r t i c l e i n f o
Article history:
Received 24 June 2008
Received in revised form 21 December 2010
Accepted 31 December 2010
Available online 14 January 2011

Keywords:
Dynamic multi-objective optimization
Time-varying system
Membrane computing (P systems)
Membrane control strategy
0020-0255/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.ins.2010.12.015

⇑ Corresponding author. Tel.: +82 22220392.
E-mail address: ihsuh@hanyang.ac.kr (I.H. Suh).
a b s t r a c t

Dynamic multi-objective optimization is a current hot topic. This paper discusses several
issues that has not been reported in the static multi-objective optimization literature such
as the loss of non-dominated solutions, the emergence of the false non-dominated solu-
tions and the necessity for an online decision-making mechanism. Then, a dynamic
multi-objective optimization algorithm is developed, which is inspired by membrane com-
puting. A novel membrane control strategy is proposed in this article and is applied to the
optimal control of a time-varying unstable plant. Experimental results clearly illustrate
that the control strategy based on the dynamic multi-objective optimization algorithm is
highly effective with a short rise time and a small overshoot.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Dynamic optimization problems (DOPs) include dynamic single-objective optimization problems (DSOOPs) and dynamic
multi-objective optimization problems (DMOOPs). Multi-objective optimization problems (MOOPs) are classified as static
multi-objective optimization problems (SMOOPs) and DMOOPs. Most real-world optimization problems are dynamic, and
they have multiple objectives; hence, they have attracted considerable interest as a frontier of science [2,12,34,36].

The literature on SMOOPs and DSOOPs has been greatly expanding with evolutionary algorithms being one of the most
popular approaches [11,23,31,39] for solving practical problems. Multi-objective evolutionary algorithms can find a set of
Pareto optimal solutions (POS) instead of a single optimal solution in a single simulation run [10,30,32,35]. Moreover, the
uniformly distributed, near-optimal, and well-extended Pareto front illustrates the shape of the true Pareto optimal front
(POF) as well as its extent. On the other hand, the objectives and/or environments change with time in many real world prob-
lems such as robot navigation, model identification and controller design. Therefore, many single objective problems have
been studied, and many bionic approximate optimization algorithms have been proposed for different time-dependent prob-
lems [1,37].

In contrast, the intersection of MOOPs and DOPs, i.e., the DMOOPs, have not been explored extensively, as is evident in the
available literature [9,20], despite the fact that many real-world problems naturally fall within the purview of DMOOPs. Jin
and Sendhoff introduced an open scheme for generating test functions when shifting dynamically between static functions
[17]. Farina et al. designed five dynamic functions with different complexities [9].
. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2010.12.015
mailto:ihsuh@hanyang.ac.kr
http://dx.doi.org/10.1016/j.ins.2010.12.015
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2371
The current dynamic multi-objective test problems and optimization algorithms were developed from their static coun-
terpoints [9]. As a result, two connotative principles have been accepted, despite a lack of investigation of their validity. The
two assumptions are as follows. First, the dynamic POS(t) of a dynamic multi-objective optimization problem equals to the
concatenation of a series of static Pareto-optimal solutions of its corresponding static problems in different time section. Sec-
ond, the selection of the sole solution from the current POS does not affect the future dynamic multi-objective sub-problems.
In other words, the current scenario is not related to the previous POS sets or the tradeoff solution. However, in real world
applications, the two pre-suppositions seldom hold. This paper attempts to overcome some of these problems. Then, on the
basis of analysis, a concrete dynamic multi-objective optimization algorithm is proposed, which is inspired by membrane
computing.

Controller design is a classical filed of application for optimization algorithms [5,6,16,33]. Multiple performance criteria,
such as maximum overshoot, settling time, rise time, phase margin, and gain margin, should be considered in order to design
stable and powerful controllers. Many examples are available in the literature such as the optimization of H2/H1 controller
parameters [18,19] and the optimization of the fuzzy rule set for fuzzy controllers [3,13,14,22]. In these examples, optimi-
zations were performed offline and the models of the plants or devices are not time-varying. In practical engineering prob-
lems, chaotic disturbances, randomness and complex nonlinear dynamic characteristics are often present. There are two
types of approaches to the dynamic optimal control problems. One is the offline optimization of controller parameters by
evaluating a controller in a number of real scenarios of the dynamic problems. Another popular approach is to search the
optimal controller online. In the latter case, an optimization approach searches for the optimal controller within a given time
span, during which the system is considered as stationary. The dynamic closed-loop system is regarded as a series of such
stationary systems. This paper investigates the advantages and disadvantages of the two approaches, and integrates them to
control a time-varying system.

Farina et al. discussed an adaptive control problem of a time-varying system as a special test case [9]. A time-dependent
optimal controller is optimized online according to multiple objectives. However, a concrete dynamic controller was not
realized. This paper investigated the test case introduced by Farina et al. [9] and proposed a novel control strategy based
on dynamic multi-objective optimization.

This paper presents several notions on DMOOPs in Section 2. Several special test functions are presented in Section 3, and
then some issues on DMOOPs are illustrated in Section 4. A novel dynamic multi-objective optimization algorithm based on
membrane computing is presented in Section 5. The unstable dynamic time-varying plant is discussed in Section 6, and a
control strategy based on dynamic multi-objective optimization approach is investigated in Section 7. Finally, the conclu-
sions are provided in Section 8.

2. Dynamic multi-objective optimization problems

Without loss of generality, optimization problems are represented by minimization problems as:

Definition 1. A multi-objective optimization problem with constraints can be formatted as a vector function f that maps a
set of N parameters (decision variables) to a set of M objectives [7,9,38].
min
X2½L;U�

f ðXÞ ¼ ff1ðXÞ; f2ðXÞ; . . . ; fMðXÞg;

s:t: gðXÞ 6 �0;hðXÞ ¼ �0;

X ¼ ðx1; x2; . . . ; xNÞ;

ð1Þ
where X is the decision vector; L and U, the lower and upper boundaries of the search space; XR, the n-dimensional decision
space; and f , the objective vector with m dimensions. The Pareto-optimal solutions of a multi-objective optimization prob-
lem consist of all the decision parameters for which the corresponding objective vectors cannot be improved in any dimen-
sion without degradation in another.
Definition 2. As a natural extension, a dynamic multi-objective optimization problem can be generally described as a vector
function with a time variable, while one or more components are made time-dependent in a static multi-objective optimi-
zation problem.
min
XðtÞ2½LðtÞ;UðtÞ�

f ðXðtÞ; tÞ ¼ ff1ðXðtÞ; tÞ; f 2ðXðtÞ; tÞ; . . . ; f mðtÞðXðtÞ; tÞg;

s:t: gðXðtÞ; tÞ 6 �0;hðXðtÞ; tÞ ¼ �0;

XðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞðtÞÞ;

ð2Þ
where t 2 R is the time variable; XðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xnðtÞðtÞÞ, the decision vector; XRðtÞ ¼ fXðtÞjXðtÞ 2 ½LðtÞ;UðtÞ�,
gðXðtÞ; tÞ 6 �0;hðXðtÞ; tÞ ¼ �0g, the decision vector space; LðtÞ, the time-varying lower boundary; and UðtÞ, the dynamic upper
boundary of the search space. The time-dependent equality and inequality constraints are represented by gðXðtÞ; tÞ and



2372 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
hðXðtÞ; tÞ, respectively. The dimension of the decision vector n(t) and the number of objectives m(t) are both time-varying. In
summary, if any parameter of a MOOP changes, the problem turns into a DMOOP. This definition stresses that the parameters
XðtÞ;XRðtÞ;nðtÞ and m(t) can be dynamic in many practical problems.
Definition 3. In the minimization case, a solution UðtÞdominates VðtÞ at time tp, if and only if, in the entire time range, there are
9tp 2 ½0;1Þ;
8i; uiðtpÞ 6 v iðtpÞ;
9j; ujðtpÞ < v jðtpÞ;
i – j;

i; j 2 f1;2; . . . ;mg;
UðtÞ ¼ ðu1ðtÞ;u2ðtÞ; . . . ; unðtÞÞ;
VðtÞ ¼ ðv1ðtÞ;v2ðtÞ; . . . ;vmðtÞÞ;
n P m;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ
Definition 4. Vector UðtÞ dominates vector VðtÞ if UðtÞ dominates VðtÞ at any fixed time during the entire time range. This is
described as in Eq. (4):
8i; uiðtÞ 6 v iðtÞ;
9j; 9tp 2 ½0;1Þ; ujðtpÞ < v jðtpÞ;
i – j; i; j 2 f1;2; . . . ;mg;
UðtÞ ¼ ðu1ðtÞ;u2ðtÞ; . . . ; unðtÞÞ;
VðtÞ ¼ ðv1ðtÞ;v2ðtÞ; . . . ;vmðtÞÞ;
n P m;

8>>>>>>>><
>>>>>>>>:

ð4Þ
Definition 5. The Pareto-optimal solution is represented by XðtÞ 2 XRðtÞ if UðtÞ ¼ f ðXðtÞ; tÞ is non-dominated in the entire
time range by any VðtÞ ¼ f ðYðt; tÞ; 8YðtÞ 2 XRðtÞ. The set of all dynamic Pareto optimal solutions is represented by POS(t).
Their values are the dynamic Pareto optimal front, and they are represented by POF(t). At a fixed time tp, their corresponding
values are XðtpÞ, POS(tp), and POF(tp).
Definition 6. If the time is fixed at tp, a dynamic problem in Definition 2 can be transformed into the corresponding static
problem in Definition 1. In the static problem, the subscript s is adopted to distinguish it from its counterparts in the
dynamic problem. XsðtPÞ 2 XsRðtpÞ is a Pareto-optimal solution of a static optimization problem fs at the fixed time tp if

UðtÞ ¼ fsðXðtpÞ; tpÞ is non-dominated by any vector VðtÞ ¼ fsðYðtpÞ; tpÞ; 8YðtpÞ 2 XsR
ðtpÞ. The Pareto optimal solution set and

the Pareto optimal front at time tp are represented by POSs(tp) and POFs(tp), respectively. If tp is discretionary, POSs(tp) and
POFs(tp) might be integrated as two new sets POSs(t) and POFs(t), respectively, over the entire time axis.
3. Test functions

A new algorithms should be detected and analyzed by using test functions. However, there is a lack of test functions for
dynamic multi-objective optimization. Farina et al. have sorted the DMOOPs into four types according to the changes in the
decision space or objective space. In addition, they designed the test functions according to different classes [7–9,17]. In this
study, other scenarios are taken into consideration as a supplement.

3.1. Time dependent dimension in decision space
T1 :

f1ðX; tÞ ¼
Pd1ðtÞ

i¼1
ðx2

i � 10 cosð2pxiÞ þ 10Þ;

f2ðX; tÞ ¼ ðx1 � 1Þ2 þ
Pd2ðtÞ

i¼2
ðx2

i � xi�1Þ2;

d1ðtÞ ¼ bnj sinðtÞjc;
d2ðtÞ ¼ bnj cos3ð2tÞjc;
t ¼ 1

nt

s
sT

j k
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: ð5Þ



L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2373
Eq. (5) is the scenario, where the dimension changes in decision space. The two objectives obtain global minimization 0 at
xi = 0 and xi = 1, respectively. Similar to test function FDA1 [15], the number of generations counter is s. The number of gen-
erations is sT during which t remains fixed, and nt is the number of distinct steps in t. The valuation can be assumed as n = 20,
sT = 5, and nt = 10. The changed dimensions are represented by two integer functions d1(t) and d2(t) with an upper limit n, as
the equation given above. While their values increase simultaneously, the two objectives conflict with each other seriously.
In practice, there are many cases where the objective functions have not changed, whereas the dimension of their decision
space is time-varying. For example, in optimal control online, different control strategies with different numbers of param-
eters are adopted at different stages.
3.2. Time dependent dimension in objective space

If the number of objectives M in test function DTLZ is transformed into a time-varying function m(t), the test function is
transformed into Eq. (6). In this case, the dimension of the decision space and the optimal values of n �M variables do not
change; however the dimension of the objective space and the shape of POF(t) change with time.
T2 :

min: f1ðxÞ ¼ ð1þ gðXIIÞÞ
QmðtÞ�1

i¼1
cos pxi

2

� �
;

min: fkðxÞ ¼ ð1þ gðXIIÞÞ
QmðtÞ�k

i¼1
cos pxi

2

� �
sin pxmðtÞ�kþ1

2

� �
; k ¼ 2 : mðtÞ � 1;

min: fmðtÞðxÞ ¼ ð1þ gðXIIÞÞ sinðpx1
2 Þ;

min: gðXIIÞ ¼
PmðtÞ
i¼1
ðxi � 0:5Þ2;

mðtÞ ¼ M � j sinð0:5ptÞjb c; t ¼ 1
nt

s
sT

j k
;

xi 2 ½0;1�; for i ¼ 1;2; . . . ;n:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ
3.3. Current solutions depend on previous solutions
T3 :

f1ðxÞ ¼ RðX; tÞ cosðpx1
2 Þ;

f2ðxÞ ¼ RðX; tÞ sinðpx1
2 Þ;

where :

RðX; tÞ ¼ avg Rðt � 1Þ þ GðX; tÞ;

avg Rðt � 1Þ ¼ 1
P

PP
j

RjðX; t � 1Þ;

avg Rð�1Þ ¼ 1;

t ¼ s
sT

j k
;

GðX; tÞ ¼
Pn
i¼2
ðxi � avg Rðt � 1ÞÞ2;

x1ðtÞ 2 ½0;1�;

xiðtÞ 2 ½avg RðtÞ � 100; avg RðtÞ þ 100�;

i ¼ 2; . . . ;n:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ
This is a complex test function. Its true POF is a quadrant with constant radius 1. The true POS is also a constant. However,
almost all algorithms will fail to find the true POF. If a slight error appears, the true radius will increase and the error will be
cumulated to the radius of further optimization sub-problems. In fact, the resulting POF(t) is a series of quadrants with
increasing radii; the current radius depends on the previous optimization results. GðX; tÞ might be replaced by other single
optimization functions to produce different test functions. The definition domain also changes with the previous computing
result.



2374 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
3.4. Current solutions depend on previous decision-making
T4 :

f1ðX; tÞ ¼
Pn
i¼1
ðx2

i � 10 cosð2pxiÞ þ 10Þ;

f2ðX; tÞ ¼ ðx1 � rðtÞÞ2 þ
Pn
i¼2
ðx2

i � xi�1Þ2;

t ¼ 1
nt

s
sT

j k
:

8>>>>>><
>>>>>>:

ð8Þ
In the test function, POF(t) depends on the previous trade-off solution and the optimal solution set. The trade-off solution
is st(t), which is derived from the current solution set by the decision making mechanism. The average error of all its vari-
ables is represented by rðtÞ ¼ 1

n

Pn
i¼1ðxi � 0Þ. The function f2 has a local minimum, r(t) = 0. If it appears, the two objectives will

be consistent.

4. Optimization approaches and analysis

Although DMOOPs are the intersection of MOOPs and DOPs, the strategies and research works on MOOPs and DOPs are
not identical; DMOOPs have their own characteristics. In this study, DMOOPs are classified as two types of problems, and
they are investigated via given corresponding approximate optimization approaches. Since objectives receive more attention
to than other factors, slow-change problems and fast change problems are investigated according to the rate of objective
change with time in objective space.

4.1. Slow-change case

Irrespective of gradual or sudden changes with a comparatively long static state in objective functions, it is natural to con-
sider them as stationary sub-functions in different time periods. In other words, this type of DMOOPs can be solved by using
a stationary optimization algorithm several times within the corresponding time spans in which the objective functions are
stationary [9].

In the stationary case, the criterion for a good algorithm is that it can quickly obtain its solution set as close as possible to
the Pareto-optimal front. This is true in the dynamic case, and the speed of convergence is emphasized. In the worst case, the
optimal front should be tracked or the transient Pareto-optimal solutions should be computed out before the objectives
change significantly. If the entire time range is divided into n nonintersecting sections Tsi, i = 1,2, . . . ,n, during which the
objectives are assumed to be stationary, the DMOOPs can be divided into n static optimization problems (SMOOPs). The
POS of the DMOOP can be approximately regarded as the optimal solution superimposition of some SMOOPs on different
instants, if the time span Tsi ? 0 and the subproblem at Tsi does not depend on the previous subproblems at 0, Ts1, . . . ,Tsi�1.

If an algorithm needs a time interval Tg to complete one optimization iteration and s iterations are allowed to track the
Pareto-optimal front, the optimization time To = Tgs must be shorter than Ts, otherwise, the algorithm fails to track the dy-
namic POFs(t). Fig. 1 illustrates this relationship. The superimposition of static objective fs(t) approximately describes the
shape of the dynamic f(t). fs(t) tracks f(t) with a delay time that is equal to the optimization time To. Therefore, the static
algorithms can be used without modification if Tg� Ts. If Tg > Ts/2, it is considered a fast-change problem and new methods
should be found.

4.2. Fast-change case

Evolutionary algorithms provide solutions after one or more iterations because the solutions need time to evolve. Their
optimal candidate solutions need time to be selected after evaluation and comparison. In other words, an evolutionary
algorithm needs more than 2 iterations to improve its candidate solutions. Therefore, if Tg > Ts/2, i.e. s = To/Tg < Ts/Tg < 2,
the dynamic problems should be transformed. If Tg is decreased or Ts is increased, the fast-change problem turns into a
slow-change problem. The time span Tg is related to the algorithm itself and the computational power of the computer.
The time span Ts is closely related to the objective function. The characteristics of an objective functions could be outlined
Fig. 1. Dynamic problem is converted into static problem.



Fig. 2. Fast-varying problem.

L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2375
by other functions, such as its k � k1, k � k2 and k � k1. If the new characteristic function changes slowly, the time span Ts

maybe longer than the algorithm’s Tg.
According to the new objective function, a fast-change optimization problem is divided into a series of subproblems like

the slow-change optimization problem. The superimposition of these subproblem solutions is considered as the solution of
the entire dynamic problem. The dynamic subproblems are dealt with as if they were static problems. However, the evalu-
ation outcome of a subproblem may be dynamic according to the original objective as illustrated in Fig. 2 since the original
objective changes dramatically during the term Ts. The comparison of the dynamic results could be executed according to
Definitions 5 and 6. As an approximate strategy, this transfer should be further investigated in theory and in practice. In prac-
tice, adopting the characteristic functions as a new objective is useful. For instance, the rising time, overshoot, settling time,
and J ¼

R1
0 tjerrorðtÞjdt are the often-used characteristic functions to describe the output curve of a control system.

4.3. Loss of nondominated solutions and the false nondominated solutions

The main idea of the approaches mentioned above is that the solutions of a dynamic multi-objective problem are approx-
imated by the superposition of a series of static solutions over the entire time axis. In practice, the evolutionary algorithms
fail to search out all solutions on the Pareto optimal front. If solutions are abundant, the set of solutions can describe the
position, the shape, and other characteristics of the true Pareto-optimal front. In the dynamic optimization case, the situation
is more complex. Evolutionary algorithms give some false global nondominated solutions, and even lose true nondominated
solutions both in theory and in practice.

As depicted in Fig. 3, in the objective space, it has assumed that an optimization problem has four nondominated solu-
tions on one objective image during the entire time range. These complete solutions are segmented according to each time
span. An optimization algorithm gets a non-dominated solution y1(Tsi�1) at the stage Tsi�1, obtains y3(Tsi) at the stage Tsi, and
searches out y3(Tsi+1) during Tsi+1. However, the superimposition of the three nondominated solutions, u(t) is not a feasible
solution to the dynamic optimization problem. It is a false nondominated solution in the objective space. In other words,
there is POS(t) – POSs(t) and POF(t) – POFs(t).

On the other hand, the algorithm discards a nondominated solutiony2(t) in objective space because it never achieves the
absolutely dominated state in any time span. However, it is a true nondominated solution during the entire time range
according to Definition 4.

Difficulty arises because many problems depend on the results given or decisions made during the previous time span. As
illustrated in Fig. 3, if y3(Tsi+1) is chosen as the sole solution at stage Tsi+1, only v2,v3 are candidate solutions for the next stage
and the subsequent solutions of y1(Tsi+1), v1,v4 are excluded. It is obviously in this case that the DMOOPs at this time cannot
be replaced by the corresponding SMOOPs, which are obtained only by fixing the time of the original problems.
5. Algorithm design based on the dynamic multi-objective optimization

In order to solve the dynamic multi-objective optimization problems above, this paper introduces a novel dynamic multi-
objective optimization algorithm inspired by P systems (DMOAP). P systems (membrane computing) are nondeterministic
Fig. 3. Dynamic solutions and static solutions.



2376 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
theoretical computing devices, which are abstracted from the structure and functioning of living cells and from the interac-
tions of living cells in tissues or higher order biological structures [25,26,29]. Due to the P system’s powerful computing
capability [21,27] and its similarity to evolutionary computation, several corresponding optimization algorithms have been
proposed that were inspired by P systems [4,15,24,28].

As discussed above, the entire dynamic POF(t) and POS(t) can be approximated by the superimposition of a series of cor-
responding static optimization results. Therefore, the task of an algorithm is designing and optimizing an equivalent static
problem during each given term Tsi. Since POF(ti) and POS(ti) are both stationary, static multi-objective algorithms could be
Fig. 4. DMOAP flowchart.



L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2377
adopted as the nuclear procedure. When the current term Tsi ends, a new equivalent SMOOP(Tsi+1) is rebuilt during the time
span Tsi+1 according to the DMOOP and the previous optimized results. Then, a static multi-objective optimization algorithm
will restart with new initial conditions. The next POF(ti+1) and POS(ti+1) will then be calculated. The entire outline POF(ti) and
POS(ti) will be outlined by the discrete sets of POF(ti) and POS(ti) at each time span Tsi. A flowchart of this process is shown in
Fig. 4 and detailed procedure is described below:

Box 1: In the initial stage, the systemic structure of the algorithm is chosen and the corresponding parameters are
specified. As depicted in Fig. 5, DMOAP borrows a type of classical P system structure that consists of membranes. These
membranes are grouped into m + 1 subsystems. m Sub-systems are single objective optimization subsystems that only opti-
mize a corresponding objective. Another subsystem is the true multi-objective optimization sub-systems that optimizes all
objectives synchronously. Each membrane has its own subpopulation and works like a single evolutionary algorithm. These
membranes are contained within two special membranes that collect the resulting chromosomes from subsystems. In them,
the chromosomes will not evolve and some inferior chromosomes will be removed. Membrane mmid accepts the resulting
chromosomes from all subsystems and sends the current Pareto optimal solution to the skin membrane. In effect, the skin
membrane is a decision making table, which selects the sole trade-off solution for the current equivalent optimization sub-
problem. In some special cases, it might pick up several trade-off solutions as the practical solutions. In the initial step, these
parameters are evaluated, such as the number of objective functions M, the number of membranes in each subsystem m i, the
number of chromosomes in every membrane Ni and other parameters. Fig. 5 illustrates the structure of the algorithm. Its
structure is divided into two SOOP subsystems and one MOOP subsystem. Each subsystem is divided into three membranes
(regions). The number of chromosomes in each membrane is shown in Table 1.

Box 2: In this stage, objects (chromosomes) with given quantity are produced at random in the decision space. They are
immediately evaluated according to each objective function. The chromosomes are coded by the connection of variables.
They can be described as follows:

As shown in Fig. 6, a chromosome includes two genes: one gene presents the new candidate solutions, while the other
describes the parameters of the equivalent optimization sub-problem when the current solution first appears. The evalua-
tions of the candidate solution on different objectives compose the signal head. This is a similar process to that performed by
a signal peptide in biology, which decides where the chromosome goes.
Fig. 5. Structure of DMOAP.

Table 1
Chromosome distribution.

Membrane label M1,1 M1,2 M1,3 M2,1 M2,2 M2,3 M3,1 M3,2 M3,3

Size of subpopulations (object set) 2 3 5 5 10 5 5 30 35

Fig. 6. Chromosome.



2378 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
Box 3: The static sub-problem is redefined and the corresponding parameters are refreshed. The optimization time To or
the maximal generations sT should be worked out according to Ts, during which the dynamic sub-problem is regarded as a
stationary sub-problem. In test cases, the parameters might be given beforehand. In practice, it is difficult to predict the on-
line optimization problem. This stage should be restarted by a stochastic interruption, which shows that the dynamic sub-
problem can be replaced by an new static equivalent problem. Therefore, the time span Ts is usually not constant. After the
new static multi-objective optimization subproblem is rebuilt during the corresponding time span Ts, other corresponding
parameters are reset, for example, the generation counter si or the optimization timer ts. The decision space must also be
refreshed.

Box 4: The objects in each membrane are redistributed according to their signal head at this stage. The new objects are
produced randomly or come from the membrane mmid that stored the previous POS(tf). Each candidate solution that obtains
the best value on each objective is reserved. 60% of the total candidate solution set, POS(tf) is selected from previous solution
set, POS(tf � 1) whose gene2 is close to the current static optimization subproblem.

There are advantages to adopting the previous solutions POS(tf � 1), though they might be dominated solutions in the cur-
rent static problem. First, these solutions are better than random feasible solutions in most practical engineering cases. Sec-
ond, it is possible that some solutions are non-dominated solutions during several different time spans. In short these
solutions might improve the convergence and precision of an algorithm.

Box 5: Refresh the generation counter or optimization timer for the next generation of the operation.
Box 6: Refresh the membrane counter and prepare for the next membrane evolution if the algorithm is realized on a serial

computer. In practice, each membrane should be implemented on its own computing device synchronously.
Box 7: The communication rule is applied. The membrane sends out some objects and adopts the objects that come from

another membrane to form the new subpopulation. This is shown in Eq. (9):
Table 2
Mutatio

Mem

gi
iþ1½iabetter1; abetter2; . . . ; abettern�i
aworse1; aworse2; . . . ; aworsen

� �
iþ1

! iþ1½iaworse1; aworse2; . . . ; aworsen�i
abetter1; abetter2; . . . ; abettern

� �
iþ1

; ð9Þ
Box 8: The offspring population is created by using the mutation rule according to in Eq. (10):
Chromosome=Object X ! Y

ð10Þ
where, n = gi � k is a random number, and k � [0,1] is a normal or uniformly distributed random number. gi is the maximum
of the parameter mutation. As shown in Table 2, their values are different in different membranes. Experiments show the
performance of algorithm is best if the gi of membrane Mj,i is approximately equal to tenth of gi+1 of membrane Mj,i+1.

Box 9: Other operators of the evolutionary algorithm can be selected to improve the performance of the algorithm. In the
following experiments, only crossover rule is explored.

Box 10: In this stage, the candidate solutions are verified according to the constraint conditions.
Box 11: If the constraints are not satisfied, the candidate solution is replaced by a random feasible solution.
Box 12: The new children population is evaluated.
Box 13: The new and old objects/chromosomes are combined and produce a new population with a doubled value of Nm.
Box 14: The best Nm nondominated chromosomes according to the domination relationship and niche strategy are com-

piled. The crowding distance is used at this stage [8].
Box 15: The next evolution is implemented until all membranes have been implemented.
Box 16: The current POS(ti) is sent to and stored in the membrane mmid. In it, only nondominated solutions are preserved.
Box 17: If the given sT or Tsi is not achieved, the algorithm will continue the optimization of the current SMOOP(ti). In

practical engineering, the dynamic problem should be detected online. If a major change occurs or the current SMOOP(ti)
has turned into another, an interruption must be carried out and a new SMOOP(ti+1) should be rebuilt as soon as possible.

The time span Ts can be given in most test functions. However, it is the time span between two successive interruptions
that represents a major change. The change should be detected online. There are two methods for change detection in dif-
ferent engineering scenarios. One is to detect dynamic factors described by the gene 2 in a chromosome. For example, if the
only dynamic factor in an optimization problem is formulated as:
n parameters.

brane M1,1 M1,2 M1,3 M2,1 M2,2 M2,3 M3,1 M3,2 M3,3

0.2 0.02 0.001 0.05 0.01 0.001 0.1 0.05 0.005



L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2379
f ðtÞ ¼ signðtÞ ¼
1 t < tc;

�1 t P tc;

�
ð11Þ
The DMOOP is considered to be two sheer SMOOPs before and after tc. If the switch time tc is not already known, the value of
the f(t) should be detected online. After tc, a major change will be detected because f(t) jumps to 1 or the change Dkf(t)k is
larger than a selected value. Therefore, the detection unit sends an interruption. A new SMOOP should be rebuilt and the new
POF and POS should be searched as soon as possible.

Another method is that a major change is judged according to the change of the objective functions [9].
eðtÞ ¼

Pn
i¼1
kfiðtÞ�fiðt�1Þk
kfiðt�1Þk

n
P eG; ð12Þ
where, the number of chromosomes n is chosen randomly, and eG is the previously given value.
Box 18: If a substantial change occurs, the skin membrane will immediately create a tradeoff solution as the optimization

result of the SMOOP during Tsi. The trade-off solution is calculated from the current POS according to its selection rule.
Box 19: The termination criterion is examined. If this criterion is satisfied, the algorithm ends. Otherwise, the next static

optimization will be regenerated according to the current state of the dynamic problem and a new search will begin.

6. Application in controller design for a time-varying unstable plant

Controller design is a good test case for new algorithms. The control of a time-varying unstable plant is a very challenging
problem. As illustrated in Fig. 7, Farina et al. [6] discussed a dynamic controller optimization problem as a case of multi-
objective optimization problem. However, they could not develop a concrete control strategy [9]. The test case is the control
of a randomly varying plant by a proportional-integral-derivative (PID) controller. The transfer functions of the plant and
controller are given as follows:
GðsÞ ¼ 1:5
50s3þa2ðtÞs2þa1ðtÞsþ1 ;

CðsÞ ¼ KpðtÞ þ KiðtÞ 1
s þ KdðtÞs;

(
ð13Þ
where a1(t) and a2(t) are time-varying parameters that simulate the aging or intrinsic random changes in system. In this case,
these variables are given as follows:
a1ðtÞ ¼ 3þ 30f ðtÞ;
a2ðtÞ ¼ 43þ 30f ðtÞ;

�
ð14Þ
where function f(t) is used to simulate different time-dependent scenarios, and is specifically given here as,
f ðtÞ ¼ sin
pt
18

	 

: ð15Þ
Apparently, the plant has different models at different times. The change of plant structure should be considered in com-
plicated scenarios. Therefore, a time-varying controller is necessary for the time-dependent plant in order to realize optimal
control. In order to evaluate a controller or a control strategy, the rising time R, the maximum overshooting O, and the set-
tling time ST are usually adopted as criteria in the time domain. If the plant of Eq. (13) is considered to be a series of problems
in different small time segments, the three criteria are time-varying from one time segment to another, which are the short
rising R(t), the small maximum overshooting O(t), and the settling time ST(t). Therefore, the multi-objective optimization
problem is formulated as follows:
min: fRðtÞ;OðtÞ; STðtÞg: ð16Þ
In order to simplify the problem, Farina et al. [6] fixed the derivative coefficient in the PID controller to Kd = 8.3317. The other
two coefficients, Ki(t) 2 (0.5,5.0) and Kp(t) 2 (0.1,1.0) could be adjusted in the given areas. Taking R(t) and O(t) as the opti-
mization criteria, Farina discussed the set of Pareto optimal solutions for nine time steps where f ðtÞ ¼ sinðpt

18Þ.
min
ðKpðtÞ;KiðtÞÞ2ð0:5;5:0Þ�ð0:1;1:0Þ

fRðKpðtÞ;KiðtÞÞ;OðKpðtÞ;KiðtÞÞ; STðKpðtÞ;KiðtÞÞg: ð17Þ
Fig. 7. Closed-loop control system.



2380 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
As shown in Figs. 8–11, the shapes and values of POF(t) and POS(t) change sharply as time progresses. During a change cycle
of f(t), the distribution of nondominated solutions of POF also changes quickly. Thus, it is required that the dynamic optimi-
zation algorithm be sufficiently flexible to work out the approximately POF and POS as fast as possible.

The test case mentioned above is sufficiently close to the practical applications of multi-objective optimization problems.
This case illustrates the basic idea and usefulness of multi-objective optimization methods. However, in the scope of control
science, a concrete controller or control strategy has not yet been devised [9]. Future investigation should strive for the real-
ization of ideal control.

The DMOAP adopted values of N = 100 and s = 100. The series of POFs(t) is obtained as depicted by Figs. 8–11. In the fig-
ures, the controllers that do not satisfy the following constraints were removed.
Tr < 50;

d < 80;

Ts < 100:

8><
>: ð18Þ
7. Control strategy based on multi-objective optimization

In order to solve this difficult control problem and illustrate the application of multi-objective optimization methods, a
control strategy for the test control problem mentioned above was worked out based on the multi-objective algorithm. Three
hypotheses are given as follows:

(a) The change in the plant is unpredictable or a predictive tool has not been adopted, although this would be a useful
strategy in practical engineering. In other words, the precise plant model’s future state is unavailable.

(b) The current state is precise and the error and time delay of plant recognition can be ignored.
(c) The controller design is based on the Eq. (13). The same general procedure may be applied to a different control strat-

egy, such as fuzzy control or H1, which is more practical for this type of plant.
0.4 0.5 0.6 0.7 0.8
50

60

70

80

Rising time

O
ve

rs
ho

t

POF(0)

0
50

100

0
200

400
200

400

600

Kp

POS(0)

Ki

Kd

0 10 20 30 40
-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(3)

0
200

400

0
200

400
0

500

1000

Kp

POS(3)

Ki

Kd

0 10 20 30 40
-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(6)

0
200

400

0
500

1000
0

5000

10000

Kp

POS(6)

Ki

Kd

Fig. 8. POS of static problems (t = 0,3,6 s).



0 0.5 1 1.5 2
20

40

60

80

Rising time

O
ve

rs
ho

t

POF(9)

0

500

0
200

400
0

500

1000

Kp

POS(9)

Ki

Kd
0 5 10 15 20

-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(12)

0
200

400

0

500
0

1000

2000

Kp

POS(12)

Ki
Kd

0 10 20 30
-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(15)

0
200

400

0
200

400
0

500

1000

Kp

POS(15)

Ki

Kd

Fig. 9. POS of static problems (t = 9,12,15 s).

L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2381
7.1. Stability analysis and search space

The transfer function of the closed-loop system is:
HðsÞ ¼ GðsÞCðsÞ
1þ GðsÞCðsÞ ¼

1:5ðKdðtÞs2 þ KpðtÞsþ KiðtÞÞ
50s4 þ a2ðtÞs3 þ ð1:5KdðtÞ þ a1ðtÞÞs2 þ ð1:5KpðtÞ þ 1Þsþ 1:5KiðtÞ

: ð19Þ
Its characteristic equation is
50s4 þ a2ðtÞs3 þ ð1:5Kd þ a1ðtÞÞs2 þ ð1:5Kp þ 1Þsþ 1:5Ki ¼ 0: ð20Þ
Since the future model of the plant is unpredictable, the closed-loop control system should have assured stability. For the
four-rank characteristic equation, the closed-loop system is stable at any time when the following constraint conditions
are satisfied according to the Routh–Hurwitz criterion:
a2ðtÞ > 0; ð21Þ
1:5KdðtÞ þ a1ðtÞ > 0; ð22Þ
1:5KpðtÞ þ 1 > 0; ð23Þ
1:5KiðtÞ > 0; ð24Þ
a2ðtÞð1:5KdðtÞ þ a1ðtÞÞ � 50ð1:5KpðtÞ þ 1Þ > 0; ð25Þ

ð1:5KpðtÞ þ 1Þða2ðtÞð1:5KdðtÞ þ a1ðtÞÞ � 50ð1:5KpðtÞ þ 1ÞÞ � 1:5Kia2
2ðtÞ > 0: ð26Þ
The first constraint, (21), is true according to the parameters of the test case. Other constraints, can be rearranged into fol-
lowing formule:



0 10 20 30 40
-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(18)

0
100

200

0
200

400
0

500

1000

Kp

POS(18)

Ki

Kd
6 7 8 9

2

3

4

5

Rising time

O
ve

rs
ho

t

 POF(21)

-2
0

2

78
80

82
3824

3826

3828

Kd

POS(21)

KpKi

0 10 20 30 40
-10

0

10

20

30

Rising time

O
ve

rs
ho

t

 POF(24)

0
100

200

0
100

200
0

2000

4000

Kp

POS(24)

Ki

Kd

Fig. 10. POS of static problems (t = 18,21,24 s).

2382 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
KdðtÞ > �
a1ðtÞ
1:5

; ð27Þ

KdðtÞ >
75KpðtÞ þ 50� a1ðtÞa2ðtÞ

1:5a2ðtÞ
; ð28Þ

� 1
1:5

< KpðtÞ <
1:5KdðtÞa2ðtÞ þ a1ðtÞa2ðtÞ � 50

75
; ð29Þ

0 < KiðtÞ <
ð1:5KpðtÞ þ 1Þða2ðtÞð1:5KdðtÞ þ a1ðtÞÞ � 50ð1:5KpðtÞ þ 1ÞÞ

1:5a2
2ðtÞ

: ð30Þ
According to (27), while f ðtÞ < � 5:3317
30 � �0:17772, there is some
KdðtÞ > �a1ðtÞ ¼ 8:3317: ð31Þ
Therefore, If Kd(t) = 8.3317 and the plant model keeps stationary, the closed-loop system is unstable. In other words, while
f(t) 2 [�1,�0.17772], there is no single fixed controller that ensures that the closed-loop system is stable. GA and PSO algo-
rithms failed to find the parameters of a stable controller in this range. Therefore, the fixed parameter Kd(t) = 8.3317 [9] is not
suitable. Due to a lack of transcendental knowledge about the parameter space, large scale [0,1000] values are searched as
illustrated in Figs. 8–11.

When the parameters of a controller are near their critical values, which are constrained by Eqs. (27)–(31), the closed-
loop system decays slowly or even oscillates indefinitely. If there are some disturbances on the parameters, the system will
become unstable. In addition, although the time-dependent closed-loop system is stable (or unstable) in the current time
section, it will be unstable (or stable) in the next time section because the plant is dynamic. For instance, the parameter
a1(t) = 3 + 30sin(pt/18) turns into positive from negative around t = 35.426. The plant loses its positive poles and the models
for the system are mismatched. Thus, the control performance will further deteriorates further. So as to increase the robust-
ness, the poles of closed system have to be placed into the left plane, far from the imaginary axis. It will be assured that the



0 5 10 15 20
0

20

40

60

80

Rising time

O
ve

rs
ho

t

POF(27)

0
100

200

0
100

200
0

5000

10000

Kp

POS(27)

Ki

Kd
0 10 20 30 40

-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(30)

0
50

100

0
50

100
0

5000

10000

Kp

POS(30)

Ki
Kd

0 5 10 15 20
-50

0

50

100

Rising time

O
ve

rs
ho

t

POF(33)

0
50

100

0
100

200
0

5000

10000

Kp

 POS(33)

Ki

Kd

Fig. 11. POS of static problems (t = 27,30,33 s).

L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2383
closed-loop system will not be unstable with a small disturbance or change of controller parameter. For example, if the poles
are in place left of location (�1,0), then variable s in (20) is replaced by (z � 1). The characteristic equation becomes:
50z4 þ ða2ðtÞ � 200Þz3 þ ð1:5KdðtÞ þ 300þ a1ðtÞ � 3a2ðtÞÞz2 þ ð1:5KpðtÞ � 3KdðtÞ � 2a1ðtÞ � 3a2ðtÞ
þ 301Þzþ 1:5KiðtÞ � 1:5KpðtÞ þ 1:5KdðtÞ þ a1ðtÞ � a2ðtÞ þ 48:5 ¼ 0: ð32Þ
The necessary condition for a stable system is that the coefficients of the characteristic equations are positive according to
the Routh–Hurwitz criterion. It requires that:
200 < a2ðtÞ ¼ 43þ 30f ðtÞ ¼ 43þ 30 sin
pt
18

	 

: ð33Þ
Obviously, this cannot be true for some values of time. Therefore, the stable margins of the control systems are inadequate
for practical engineering. Therefore, the PID controller for the test case is suspect. However, it is a good test case to verify the
performance of multi-objective optimization algorithms. This work adopts the PID controller as the basic controller and opti-
mizes its parameters to realize the control of a dynamic unstable plant based on multi-objective optimization algorithms.

7.2. Dynamic superimposition of the static optimal controllers

The result of dynamic multi-objective optimization is not a controller, but a set of non-dominated controller sets as de-
picted in Figs. 8–11. In the multi-objective optimization controller design process, the trade-off among nondominated con-
trollers is delayed until a set of feasible nondominated controllers is designed. Most investigations are only concerned with
the method of obtaining the resultant controller set. The final choice should be decided by the preferences of engineers con-
sidering practical matters. In the dynamic case, one controller must be used and only one controller can be adopted at any
time. The most difficult challenge is that controllers must be chosen online from these optimal controller sets. There is little
knowledge about the forthcoming nondominated controller set. Moreover, there is not enough knowledge of the system’s



2384 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
condition. There is also no sign of the next systemic change. Finally, real-time choice must be made before the next change
emerges.

Because nondominated controllers have advantages and disadvantages, the choice of the trade-off controller is difficult. In
this control problem, the criteria Tr, d, and Ts appears in different terms. Therefore, they might be combined as one objective
with different priorities at different times.

In order to illustrate the selection and switching of controllers, an experiment is performed as detailed below. In the first
step, the controllers with minimum rise time are selected from the non-dominated controller sets when the systemic output
is in the rising portion. In the second stage, the controllers with minimum overshoot are chosen before overshoot occurs. In
the final stage, the controllers with minimum settling time are adopted from the corresponding static sets. Fig. 12 illustrates
the effect of the strategy. However, it is obviously a failure in practice.

To illustrate the reasons for the failure of this strategy, the control of a static plant GðsÞ ¼ 1�0:5s
ðsþ1Þ3

is taken as an example.

Controllers C1ðsÞ ¼ 1:8406 1þ 1
1:9523sþ 0:8498s

0:0269sþ1

� �
and C2ðsÞ ¼ 0:4556 1þ 1

1:9292sþ 0:0005s
4:7159sþ1

� �
are chosen from the plant’s non-

dominated solution set. Controller C1(s) has a shorter rising time (1.9994s) with overshoot (24.7%); controller C2(s) has a
longer rising time (6.6528s) without overshoot while they control the plant respectively from zero state. Considered the fol-
lowing strategy, controller C2(s) is switched on in order to decrease the overshoot when the output are adjust from zero to
90% of the given value by controller C1(s). The practical output is shown in Fig. 13. As is evident, there is high overshoot and
substantial oscillation. This combination of the two controllers will not improve the performance, but will instead damage it.
To the controller C2(s), in fact, the adjust result of C1(s) is similar to a disturbance. In addition, a controller without overshoot
has less power to restrain disturbances. As is shown in Fig. 13, it is important to note that the impact on the output is sub-
stantial if the controller C2(s) is switched on when the output is unstable (before the adjusting time).

The experiment above illustrates that the optimal controller set of a dynamic system over the entire time axis is not sim-
ply the combination of the controllers that come from the static optimal controller sets in each time section. On one hand,
the control performance will worsen if the plant changes; new controllers must be adopted for new plants. On the other
hand, the dynamic process will quickly worsen if the optimal controller for the zero static plant is switched on during
the dynamic process. This is a dilemma.

When a new controller is switched on, the system is not in the zero initial state at which the controller is considered a
nondominated one. In other words, the optimal controller set obtained at static state (zero initial state) is not optimal con-
troller to the system in dynamic environment (nonzero initial state). Therefore, the optimal controller set should be recom-
puted in new dynamic environments. The current state should be taken into consider when optimal controllers are sought
online by the dynamic multi-objective optimization algorithm. The optimal controllers based on the current systemic state,
historical control rule, and output are very different from the controllers based only on the systemic current model with zero
state.
7.3. Dynamic choice of controllers

Considering the plant as static over a small section of time, the methodology [9] searches the optimal set according to
three general criteria: R, O, and ST. The series of R, O, and ST in each time section form into the dynamic criteria, R(t),
O(t), and ST(t). In practice, the entire systemic output response has only one value each for the three criteria. They are non-
dynamic constants: R, O, and ST. Therefore, the evaluation criterion should be adjusted after the common criteria R, O, and ST
are met one by one. After the settling time ST, the low oscillation frequency and small error may become the most important
0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (seconds)

Sy
st

em
ic

 O
ut

pu
t

Given Value
Systemic Output
Rising time

Fig. 12. Superimposition of static controllers.



0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (seconds)

O
ut

pu
t y

(t)
Switch time 1 Rising time
Given value
Output if switch at rising time
Switch time 2 Setting time
Output if switch at setting time
Output by controller C1

Fig. 13. Effect of controller switching on a static plant.

L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2385
for good performance. The rising time, overshoot, and settling time based on the current plant model in the zero initial con-
dition can be considered intrinsic and basic requirements. Based on the investigation of the method [15], the three common
criteria are modified to adapt to the entire time range. The evaluation functions are modified as follows:
min: fTrðtÞ þ J; dðtÞ þ J; TsðtÞ þ Jg;
J ¼ 0:01�

Ptcþte
t¼tc
jerrorðtÞj:

(
ð34Þ
The objectives Tr(t), d(t) and Ts(t) are modified as their originals were not defined after the output error is adjusted to less
than 2%. The criterion Tr(t) represents the time taken for the output to reach the given value. The criterion d(t) is the max-
imum absolute output error during the given evaluation term te after the current time section. The criterion Ts(t) represents
the time after which the output error is less than 1%. Each objective adds J as a penalty function. Long or short evaluation
time is not applicable. In the following work, the variable is fixed as te = 4 s. During this time, the plant is considered to
be static.

According to the general idea outlined above, DMOAP obtained a series of optimal controller sets at each time section. The
control strategy formed over the entire time range by a controller is selected from correspondent nondominated controller
set at each time section. Selecting a controller from the resulting nondominated controllers is a difficult problem. Different
choices make the next nondominated controller set very different. Moreover, the current nondominated depends on the
choice made during the previous time span.

For stationary multi-objective optimization problems, the decision-making is left to the engineers or decision-makers
after a nondominated solution set is found. In the dynamic case, while the nondominated solution set is sought, a trade-
off solution must be chosen and implemented for the next optimization phase as soon as possible. Therefore, engineers
or decision-makers must be replaced by an automatic procedure to choose a tradeoff solution from the resulting nondom-
inated solutions.

In most situations, the more a priori knowledge about the resulting nondominated solution set, the more it helps the
building of this type of automatic decision-making mechanism. There are two types of methods in general. The first method
is assigning a weight wi for each objective according to their relative importance. Then, the sum of all objectives is computed.
The best solution is selected for the forthcoming time period according to the computed result. For example, the control test
problem could choose the controller with lowest J value at each time section as shown in the following:
J ¼ w1Rþw2Oþw3ST: ð35Þ
However, some method is required for the confirmation of the dynamic weights. If the weights could be fixed with a priori
knowledge, the multi-objective optimization becomes a single easy optimization problem.

Another natural method is the one in which a trade-off solution is chosen from the solution set according to additional
objectives or secondary objectives. There are many objectives in practical engineering. The least energy required or smallest
output error can be introduced as a secondary objective to select a tradeoff controller for the forthcoming period of the con-
trol problem.

Different selection principles have important effects on the systemic output performance. Because the previous perfor-
mance will be optimized later, the systemic output performance is only evaluated in a given time term te. The two choice
rules are given in Table 3 for different scenarios. As shown in the second row of Table 3, the most important task is calcu-
lating the shortest rising time if the output error is larger than 10% of the given value. This rule will choose the controller by
which the output approaches the given value during te as quickly as possible. If the oscillation of the output appears or the



Table 3
Decision-making table.

Current error(t) r1: first selection rule (min) r2: second selection rule (min)

jerror(t)j > 10% min(jerror(t)j), t 2 [tc, tc + te] JT ¼
R tcþte

tc
j errorðtÞ j dt

2% < jerror(t)j < 10% max(jerror(t)j), t 2 [tc, tc + te] JT ¼
R tcþte

tc
j errorðtÞ j dt

jerror(t)j < 2% JT ¼
R tcþte

tc
jerrorðtÞjdt max(jerror(t)j), t 2 [tc, tc + te]

2386 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
output arrives at the given value, the rule loses its effectiveness because min (error(tr)) = 0, tr 2 [tc, tc + te]. The secondary rule
r2 : JT ¼

R tcþte

tc
jerrorðtÞjdt will select the controller for which the output will be stable.

It is necessary to point out that the rules in the decision-making table are different from the criteria in the multi-
objectives optimization algorithm. They can be considered as assisting each other. However, the decision-making table is
somewhat rough, and it requires further investigation. In particular, this system can be considered as a set of rules in the
standard P systems. P systems (membrane computing), as computing devices based on rules, are good at dealing with rules.
Therefore, more methods can be borrowed from P systems.

According to the idea outlined above, the DMOAP searches the non-dominated controller set for the system’s condition
every second. The scale of the chromosome set in DMOAP is fixed at 50. The algorithm outputs the nondominated solution
set after five iterations. The systemic output and the controller parameter are shown in Figs. 14 and 15. The rising time,
settling time, and overshoot are better than the value of any POF in Figs. 8–11. This illustrates that the control and optimi-
zation strategies are effective.
0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (seconds)

ou
tp

ut
 y

(t)

Given value
Systemic output
Rising time
Setting time

Fig. 14. Optimal control performance.

0 10 20 30 40 50 60 70

0.96

0.98

1

1.02

O
ut

pu
t y

(t)

0 10 20 30 40 50 60 70
-10

-5

0

5

10

Time (s)

C
on

tro
l l

aw
 u

(t)

Fig. 15. Output and control law.



L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2387
7.4. Real time

The unstable dynamic plant is correctly controlled by the control strategy above. However, reliability and real-time per-
formance should be discussed. The control strategy above is realized by the controller parameters are optimized based on the
system’s condition. The system’s condition is adjusted by the new optimized controller. Probably, this is impractical because
the optimization algorithm takes time to run. The control strategy requires that controller be optimized in advance. Thus, the
plant model and systemic state should be predicted in advance. However, process time and predictive error maybe cause
difficult. Therefore, the real time should be checked in particular.

A strategy is that the old controller is retained until a new controller is computed. During the optimization process, the
plant model and systemic state change. Therefore, it should be tested whether the new systemic state can be controlled cor-
rectly by the new controller. Additionally, the overshoot performance should be experimentally verified.

A new controller is switched on after different delay times (considered to be the optimization times). The object set size of
the DMOAP is 100. It iterates six times to produce a new controller. The systemic output performance is shown in Fig. 17, in
which a new controller is switched in after different given times. It shows that performance is adequate if a new controller
can be optimized in 1.5 s. If the optimization time is longer than 2 s, output performance will worsen. In practice, the sim-
ulation optimization time is 0.48 s by Matlab7.1 software on a personal computer with a CPU 2.4 GHz and with 512 M of
RAM. The optimization time is less than the limiting 1.5 s. Moreover, the optimization algorithm can be realized in parallel
by multiple of computers. If each membrane is simulated by a separate CPU and the procedure is written in C, the control
strategy will satisfy real-time requirements [38].
7.5. Reliability problem

Although the output performance is very good and the real-time requirement is met, the reliability bears some discussion.
First, the control strategy depends on the dynamic multi-objective optimization algorithm. Although the DMOAP converges
quickly and precisely, it is a random, and nondetermined search algorithm. DMOAP fails to assure that it will find a satisfac-
tory controller each time. However, an unsatisfactory controller will be replaced at the next switch cycle. Second, the sys-
temic stability should be investigated while the controller make each switch.

Therefore, although the plant changes continuously, the switch number should be decreased as much as possible. When
dynamic multi-objective optimization methods are applied in the controller design above, the control problem is considered
either a type I or type II dynamic multi-objective optimization problem in which the non-dominated controller (POS) has
changed with the varying plant. Therefore, the control strategy is searching for the dynamic optimal solution set POS(t).
The POF(t) is obtained by taking the optimal solution at different times as the parameters of the controller (PID).
0 10 20 30 40 50 60 70
0

100

200

300

Kp

0 10 20 30 40 50 60 70
0

10

20

30

Ki

0 10 20 30 40 50 60 70
0

200

400

600

time (seconds)

Kd

Fig. 16. PID parameters.



0 5 10 15 20 25 30 35 40 45 50
0.9

0.95

1

ou
tp

ut
 y

 switch controllers are delayed 0.5 seconds

0 5 10 15 20 25 30 35 40 45 50
0.9

1

1.1

1.2

time (seconds)

ou
tp

ut
 y

 switch controllers are delayed 2 seconds

0 5 10 15 20 25 30 35 40 45 50
0.9

0.95

1

ou
tp

ut
 y

 switch controllers are delayed 1 seconds

0 5 10 15 20 25 30 35 40 45 50
0.9

0.95

1

ou
tp

ut
 y

 switch controllers are delayed 1.5 seconds

Fig. 17. Systemic output with different optimal times.

2388 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
In fact, the control problem also can be considered as type IV multi-objective optimization problem in which the POS does
not change despite the optimization problem changing. The optimal controller set is computed, which will not change while
the plant is changing. The optimal performance in the entire time range is emphasized. In fact, the strategy becomes a robust
control strategy to a certain extent. The output is required to satisfy performance without tuning the controller when dis-
turbance occurs.

Since this type of POS will not change, the POS can be sought by the multi-objective optimization algorithm if the change
of in the plant can be predicted or simulated. The periodic plant model is easily recognized online. If the dynamic plant is
nonperiodic, a longer term is given. Where the recognition time is longer, the model will be more precise. The controllers
(solutions) are evaluated based on the recognized dynamic model. The model is verified when controllers are optimized
based on recognized models. If the plant changes dramatically, the plant model will be rebuilt for the entire time range
and the optimization algorithm will restart. The obtained nondominated solutions (controllers) are taken as initial candidate
solutions. At the decision-making stage, the controllers have higher priority, which appears more times as nondominated
solutions. The controllers may be made more robust. This robust version is called as the DPMOA-III/IV, which searches a con-
stant POS for the dynamic plant during the entire range. Correspondingly, a controller that searches a temporarily POS(t) dur-
ing each small time span is called a DPMOA-I/II.

After the system completes a cycle, the dynamic plant is recognized. Based on the dynamic plant, the DPMOA-III/IV gains
a set of nondominated robust controllers (POS) if there are stable controllers. For this type of unstable dynamic plant, the
systemic performance is usually not good enough despite finding a set of stable controllers. The rising time and settling time
may be long and the overshoot may be large.

The dynamic plant can be adjusted by these controllers together, which are optimized by the DPMOA-III/IV and DPMOA-I/
II. If the model mismatch is not serious or disturbance is slight, the controller optimized by DPMOA-III/IV is switched on
while the system is stable. Thus, the controller switch number will be decreased, and reliability will be increased. If the mod-
el mismatch is serious and the current controller fails to restrain it, a series of controllers are switched on, which are opti-
mized by the DPMOA-I/II.

As shown in Fig. 18, the control strategy has two multi-objective optimization sub-systems. The first subsystem optimizes
the controller parameters based on the system’s condition for temporary control. It takes short time intervals but has strict
requirements for the hardware. Moreover, the control strategy depends on system’s precise states and switches controllers
frequently. The closed-loop system has perfect dynamic output with short rising time and small overshoot. The secondary
subsystem searches for a robust controller for long term control. However, it may fail to find a robust controller. Moreover,
the secondary subsystem optimizes slowly but does not depend on the systemic current state. The closed-loop system is not
sensitive to the change of plant model. The controller is suitable to the stable scenario. The two optimization subsystems



er y

Systemic Recognizer

DMOAP-I/II

DMOAP-III/IV

Decision Making Table

Common controller Varying Plant

Fig. 18. Membrane control strategy.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time (seconds)

O
ut

pu
t y

(t)

Given value
Output(t)
Rising time
Setting time
Controller swith

Fig. 19. Control performance (a).

20 40 60 80 100 120 140

0.98

0.985

0.99

0.995

1

1.005

1.01

Time (seconds)

O
ut

pu
t y

(t)

Given value
Output(t)
Rising time
Setting time
Controller swith

Fig. 20. Control performance (b).

L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2389
adjust the parameters of a common controller. Therefore, the decision-making is slightly more complicated than depicted in
Table 3. Usually, the controller optimized by the first system adjusts the dynamic process. The controller optimized by the
secondary subsystem adjusts the stable process. The integrated control strategy has high-quality performance that is



Table 4
Varying controller parameters.

Switch timetc(s) Kp Ki Kd

0 849.7982 510.9858 129.6465
1 1.060991 2.662683 72.63262
3 101.8757 12.7133 197.4475
5 296.2907 4.763173 417.0785
7 187.3915 1.063664 395.141
9 261.6264 0.075171 565.4168

11 98.82025 0.075171 565.4168
13 95.67501 0.31902 407.8749
15 4.837464 0.285681 996.0672
17 27.90108 0.285681 769.9372
19 201.6736 0.259656 906.9537
21 84.81614 0.259656 539.0685
23 1.298204 0.259656 539.0685
25 4.521637 0.083473 372.2638
27 2.083353 0.152096 372.2638
29 0.155093 0.152096 372.2638
31 0.155093 0.152096 624.6839
33 0.155093 0.152096 624.6839
35 0.155093 0.152096 274.8282
After 36 s 108.95 0.165 340.37

2390 L. Huang et al. / Information Sciences 181 (2011) 2370–2391
illustrated by performing simulation experiments, as shown in Figs. 19 and 20. The concrete parameters of the controller and
switch time are shown in Table 4. Since the algorithm is inspired by membrane computing, the control strategy is called the
‘membrane strategy’.

In short, according to the analysis of the stability, the parameter range should be enlarged. With systemic changes in
parameter f(t), the series of static POFs will be worse and might not even exist in the domain under consideration. As shown
in Fig. 16, if the parameters were constrained to small domains (Kd(t) = 8.3317, Ki(t) 2 (0.5,5.0), Kp(t) 2 (0.1,1.0)) without
transcendental knowledge, the global optimal solutions might be excluded from the given domain. In fact, algorithms GA
and PSO failed to find an effective controller that might have been able to realize stable control of the dynamic unstable
plant. Based on this investigation, a set of concrete control parameters is designed and shown in Table 4. This control param-
eters give excellent control performance.
8. Conclusions

This paper investigated several issues related to the dynamic multi-objective optimization problem. We discussed several
test cases and also proposed a novel multi-objective optimization algorithm. Moreover, the paper investigated the effects of
trade-off solutions for dynamic optimization results. The key process of the dynamic multi-objective optimization is about
the construction of discrete, equivalent, and static subproblems during each time range. Issues related to the false solutions,
the loss of nondominated solutions, and the dependence on trade-off solution require more future investigation.

Finally, the application of multi-objective optimization in control science is analyzed by taking the varying plant as a test
case. The most important contribution is a membrane control strategy for the unstable varying plant that has been designed
on the basic of dynamic multi-objective optimization. The stability, real-time performance, controller switching, selection of
solution, and reliability were investigated. Simulation results illustrate that the proposed strategy exhibits excellent perfor-
mance, including ideal systemic output, whereas a GA and PSO algorithm failed to design a stable controller for the unstable
time-varying plant.

Acknowledgement

This work was supported in part by the Technology Innovation Program of MKE/KEIT [2008-F-038-01, Development of
Context Adaptive Cognition Technology].

References

[1] M.A. Abo-Sinna, Multiple objective (fuzzy) dynamic programming problems: a survey and some applications, Applied Mathematics and Computation
157 (3) (2004) 861–888.

[2] Z. Bingul, Adaptive genetic algorithms applied to dynamic multiobjective problems, Applied Soft Computing 7 (3) (2007) 791–799.
[3] E. Bolinger, An optimization of the fuzzy control algorithm, Information Sciences – Applications 2 (3) (1994) 135–142.
[4] M. Cardona, M.A. Colomer, M.J. Pérez-Jiménez, A. Zaragoza, Handling Markov chains with membrane computing, in: Unconventional Computation,

Proceedings, vol. 4135, 2006, pp. 72–85.
[5] O. Castillo, R. Martı́nez-Marroquı́n, P. Melin, F. Valdez, J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and

type-2 fuzzy controllers for an autonomous mobile robot, Information Sciences, in press, Corrected Proof.



L. Huang et al. / Information Sciences 181 (2011) 2370–2391 2391
[6] W.D. Chang, S.P. Shih, PID controller design of nonlinear systems using an improved particle swarm optimization approach, Communications in
Nonlinear Science and Numerical Simulation 15 (11) (2010) 3632–3639.

[7] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, Chichester, UK, 2001.
[8] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation

6 (2) (2002) 182–197.
[9] M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization problems: test cases, approximations, and applications, IEEE Transactions on

Evolutionary Computation 8 (5) (2004) 425–442.
[10] E. Fernandez, E. Lopez, F. Lopez, C.A.C. Coello, Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization:

the extended NOSGA method, Information Sciences 181 (1) (2011) 44–56.
[11] L. Gosselin, M. Tye-Gingras, F. Mathieu-Potvin, Review of utilization of genetic algorithms in heat transfer problems, International Journal of Heat and

Mass Transfer 52 (9-10) (2009) 2169–2188.
[12] S.U. Guan, Q. Chen, W.T. Mo, Evolving dynamic multi-objective optimization problems with objective replacement, Artificial Intelligence Review 23 (3)

(2005) 267–293.
[13] H.W. Hayley, T. Jules, Multi-objective optimization for chemical processes and controller design: approximating and classifying the Pareto domain,

Computers & Chemical Engineering 30 (6–7) (2006) 1155–1168.
[14] F. Hoffmann, G. Pfister, Evolutionary design of a fuzzy knowledge base for a mobile robot, International Journal of Approximate Reasoning 17 (4)

(1997) 447–469.
[15] L. Huang, N. Wang, An optimization algorithm inspired by membrane computing, Advances in Natural Computation 4222 (2006) 49–52.
[16] L. Huang, N. Wang, J.H. Zhao, Multiobjective optimization for controller design, Acta Automatica Sinica 34 (4) (2008) 472–477.
[17] Y.C. Jin, B. Sendhoff, Constructing dynamic optimization test problems using the multi-objective optimization concept, Lecture Notes in Computer

Science 3005 (2004) 525–536.
[18] I. Kitsios, T. Pimenides, H[infinity] controller design for a distillation column using genetic algorithms, Mathematics and Computers in Simulation 60

(3) (2002) 357–367.
[19] C.H. Lee, Low order robust controller design for preserving H[infinity] performance: genetic algorithm approach, ISA Transactions 43 (4) (2004) 539–

547.
[20] D. Li, Y.Y. Haimes, Multiobjective dynamic programming: the state of the art, Theory and Advanced Technology 5 (4) (1989) 471–483.
[21] C. Martin-Vide, A. Pa�un, G. Pa�un, On the power of P systems with symport rules, Journal of Universal Computer Science 8 (2) (2002) 317–331.
[22] M. Mucientes, D.L. Moreno, A. Bugarín, S. Barro, Design of a fuzzy controller in mobile robotics using genetic algorithms, Applied Soft Computing 7 (2)

(2007) 540–546.
[23] I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes, Computers & Industrial Engineering 50 (1-2) (2006) 15–34.
[24] T.Y. Nishida, An application of P system: a new algorithm for NP-complete optimization problems, in: Proceedings of the 8th World Multi-Conference

on Systems, Cybernetics and Informationtics, vol. 5, 2004, pp. 109–112.
[25] G. Pa�un, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000) 108–143.
[26] G. Pa�un, From cells to computers: computing with membranes (P systems), Biosystems 59 (3) (2001) 139–158.
[27] G. Pa�un, Membrane computing: power, efficiency, applications, New Computational Paradigms 3526 (2005) 396–407.
[28] G. Pa�un, M.J. Pérez-Jiménez, Membrane computing: brief introduction, recent results and applications, Biosystems 85 (1) (2006) 11–22.
[29] A. Pa�un, G. Pa�un, The power of communication: P systems with symport/antiport, New Generation Computing 20 (3) (2002) 295–305.
[30] N. Serinivas, K. Deb, Multiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation 2 (3) (1994) 221–248.
[31] C. Shi, Z.Y. Yan, K. Lü, Z.Z. Shi, B. Wang, A dominance tree and its application in evolutionary multi-objective optimization, Information Sciences 179

(20) (2009) 3540–3560.
[32] V.V.R. Silva, P.J. Fleming, J. Sugimoto, R. Yokoyama, Multiobjective optimization using variable complexity modelling for control system design, Applied

Soft Computing 8 (1) (2008) 392–401.
[33] R.R. Sumar, A.A.R. Coelho, L.D.S. Coelho, Use of an artificial immune network optimization approach to tune the parameters of a discrete variable

structure controller, Expert Systems with Applications 36 (3) (2009) 5009–5015.
[34] F. Szidarovszky, L. Duckstein, Dynamic multiobjective optimization: a framework with application to regional water and mining management,

European Journal of Operational Research 24 (2) (1986) 305–317.
[35] A. Tarafder, G.P. Rangaiah, A.K. Ray, A study of finding many desirable solutions in multiobjective optimization of chemical processes, Computers &

Chemical Engineering 31 (10) (2007) 1257–1271.
[36] K. Trojanowski, S.T. Wierzchon, Immune-based algorithms for dynamic optimization, Information Sciences 179 (10) (2009) 1495–1515.
[37] V.M. Zavala, A. Flores-Tlacuahuac, E. Vivaldo-Lima, Dynamic optimization of a semi-batch reactor for polyurethane production, Chemical Engineering

Science 60 (11) (2005) 3061–3079.
[38] E. Zitzler, K. Deb, L. Thiele, Comparison of multi-objective evolutionary algorithms: empirical results, IEEE Transactions on Evolutionary Computation 8

(2) (2000) 173–195.
[39] F.A. Zotes, M.S. Peñas, Multi-criteria genetic optimisation of the manoeuvres of a two-stage launcher, Information Sciences 180 (6) (2010) 896–910.


	Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants
	Introduction
	Dynamic multi-objective optimization problems
	Test functions
	Time dependent dimension in decision space
	Time dependent dimension in objective space
	Current solutions depend on previous solutions
	Current solutions depend on previous decision-making

	Optimization approaches and analysis
	Slow-change case
	Fast-change case
	Loss of nondominated solutions and the false nondominated solutions

	Algorithm design based on the dynamic multi-objective optimization
	Application in controller design for a time-varying unstable plant
	Control strategy based on multi-objective optimization
	Stability analysis and search space
	Dynamic superimposition of the static optimal controllers
	Dynamic choice of controllers
	Real time
	Reliability problem

	Conclusions
	Acknowledgement
	References


