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Abstract. Swarm Intelligence (SI) is an innovative distributed intelligent paradigm whereby the
collective behaviors of unsophisticated individuals interacting locally with their environment cause
coherent functional global patterns to emerge. In this paper, we model the scheduling problem for
the multi-objective Flexible Job-shop Scheduling Problems (FJSP) and attempt to formulate and
solve the problem using a Multi Particle Swarm Optimization(MPSO) approach. MPSO consists of
multi-swarms of particles, which searches for the operation order update and machine selection. All
the swarms search the optima synergistically and maintain the balance between diversity of particles
and search space. We theoretically prove that the multi-swarm synergetic optimization algorithm
converges with a probability of 1 towards the global optima.The details of the implementation for
the multi-objective FJSP and the corresponding computational experiments are reported. The results
indicate that the proposed algorithm is an efficient approach for the multi-objective FJSP, especially
for large scale problems.
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1. Introduction

Flexible job-shop scheduling problem is an extension of theclassical JSP, which allows an operation
to be processed by any machine from a given set. It incorporates all the difficulties and complexities
of its predecessor JSP and is more complex than JSP because ofthe additional need to determine the
assignment of operations to the machines. The job shop is flexible, i.e. there are multiple job routes. The
scheduling problem of a FJSP consists of a routing sub-problem, that is, assigning each operation to a
machine out of a set of capable machines and the scheduling sub-problem, which consists of sequencing
the assigned operations on all machines in order to obtain a feasible schedule minimizing a predefined
objective function. It is quite difficult to achieve an optimal solution with traditional optimization ap-
proaches owing to the high computational complexity. But itis one of the most critical issues in the
planning and managing of manufacturing processes. Many practical problems have an underlying job-
shop structure, such as multiprocessor task scheduling, network routing, robotic cell scheduling, project
scheduling, railway scheduling, air traffic control.

Particle Swarm Optimization (PSO) incorporates swarming behaviors observed in flocks of birds,
schools of fish, or swarms of bees, and even human social behavior, from which the intelligence is
emerged [1, 2]. It has become the new focus of research recently [3, 4, 5, 6, 7, 8, 9]. As an algorithm,
its main strength is its fast convergence, which compares favorably with many other global optimization
algorithms. However, for some complex problems, it often demonstrates faster convergence speed in the
first phase of the search, and then slows down or even stops as the number of generations is increased.
Once the algorithm slows down, it is difficult to achieve better fitness values. This state is called as
stagnation or premature convergence. It is found that the swarm tends to collapse too fast when the
process converges. In this paper, a multi-swarm PSO is investigated for solving the multi-objective FJSP.
We introduce multi-swarms of particles to map different orders in the multi-objective FJSP, in which
particles search for operation order update while others search for machine selection. All swarms search
the optima synergistically and maintain the balance between diversity of particles and search space. The
details of implementation for the multi-objective FJSP andthe corresponding computational experiments
are reported in this paper.

The rest of the paper is organized as follows. Related works about FJSP is reviewed in Section 2.
We analyze the main factors of the multi-objective FJSP and formulate them in Section 3. In Section 4,
particle swarm models are introduced and the MPSO model is described in detail. In Section 5, we theo-
retically prove the properties related to the encoding representation and the convergence of the proposed
algorithm. Experiment settings, results and discussions are given in Section 6. Finally Conclusions are
given in Section 7.

2. Related works

Flexible Job-shop Scheduling Problem has been drawing researchers’ attention worldwide, not only be-
cause of its practical and theoretical importance, but alsobecause of its complexity. The FJSP is a
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NP-hard optimization problem [10, 11, 12]. Different approaches have been proposed to solve this prob-
lem. Bruker and Schlie [13] illustrated a polynomial algorithm for solving flexible job shop scheduling
problems with two jobs. When the number of machines and the maximum number of operations per job
are fixed, Jansenet al. [14] provided a linear time approximation scheme. Mastrolilli and Gambardella
[15] proposed some neighborhood functions for FJSP. Because of the intractable nature of the problem
and its importance in both fields of practical application and combinatorial optimization, it is desirable to
explore other avenues for developing heuristic and metaheuristic algorithms. Pezzellaaet al. [16] clas-
sified them into two main categories: hierarchical approachand integrated approach. The hierarchical
approach attempts to solve the problem by decomposing it into a sequence of subproblems, with reduced
difficulty. Job routing and sequencing are usual studied separately [17, 18, 19, 20, 21, 22]. Most of them
solve the assignment problem using some dispatching rules,and then solve it using different tabu search
heuristics. Integrated approach is much more difficult to solve, but in general achieves better results.
Hurink et al. [23] developed tabu search algorithms to solve the problem. Dauzére-Pérés and Paulli [24]
extended the classical disjunctive graph model for job shopscheduling to take into account the fact that
operations have to be assigned to machines in the FJSP. Basedon the extended disjunctive graph, a new
neighborhood structure is defined and a tabu search procedure is provided to solve the problem. Brandi-
marte [20], Mastrolilli and Gambardella [25], Saidi-Mehrabad and Fattahi [26] presented tabu search
algorithms that solve the flexible job shop scheduling problem to minimize the makespan time.

More researchers attempt to solve the FJSP using genetic algorithms [16, 27, 28, 29]. Zhang and Gen
[30] proposed a multistage operation-based GA to deal with the problem from a point view of dynamic
programming. Chenet al. [31] split the chromosome representation into two parts, the first defining the
routing policy, and the second the sequence of operations oneach machine. Jiaet al. [32] proposed a
modified GA able to solve distributed scheduling problems and can be adapted for FJSP. Ho and Tay
[33] proposed an efficient methodology called GENACE based on a cultural evolutionary architecture
for solving FJSP with recirculation. Hoet al. [34] proposed an architecture for learning and evolving of
Flexible Job-Shop schedules to improve the computational time and quality of schedules. Onget al. [35]
applied the clone selection principle of the human immune system to solve FJSP with re-circulation.

In many real-world FJSP, it is often necessary to optimize several criteria [36]. Minimization of
makespan, lateness, tardiness, flow time, machine idle time, and such others are unusual the important
criteria in the problems. Kacemet al. [37, 38] study on modeling genetic algorithms for FJSP. Tanev
et al. [39] investigate an evolutionary algorithm-based approach for scheduling of customers’ orders
in factories of plastic injection machines (FPIM) as a case of real-world flexible job shop scheduling
problem. They attempt to develop an efficient scheduling routine for planning the assignment of the
submitted customers’ orders to FPIM machines. The results obtained for evolving a schedule of 400
customers’ orders on experimental model of FPIM indicate that the business delays in order of half-an-
hour can be achieved.

Recently, swarm intelligence and multiagent techniques have attracted the attention of several re-
searchers from different application domains. Liouaneet al. [40] proposed a hybrid algorithm based
on ant systems and local search optimization for FJSP. Blum and Samples [41] illustrated a neighbor-
hood structure for the problem by extending the well-known neighborhood structure derived by Nowicki
and Smutnicki [42] for the job shop scheduling problem. Then, the authors developed an ant colony
optimization approach, which uses a strong non-delay guidance for constructing solutions and which
employs black-box local search procedures to improve the constructed solutions. Wu and Weng [43] pro-
posed a multi-agent scheduling method with job earliness and tardiness objectives in a flexible job-shop
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environment. The computational experiments show that the proposed multi-agent scheduling method is
quite fast. By hybridizing particle swarm optimization andsimulated annealing, Xia and Wu [44] de-
veloped a hybrid approach for the multi-objective flexible job-shop scheduling problem. Sha and Hsu
[45] applied Giffler and Thompson’s heuristic [46] to decodea particle position into a schedule. The
computational results show that their approaches can obtain better solutions. They also point out the
future works: (1) modify particle position representationfor better suitability to the problem; (2) design
other particle movement methods and particle velocity for the modified particle position representation.
As Baykasoğluet al [47] discussed, the most important issue in employing meta-heuristics for combi-
natorial optimization problems is to develop an effective “problem mapping” and “solution generation”
mechanism. If these two mechanisms are devised successfully, then it is possible to find good solutions
to a given optimization problem in an acceptable time.

3. Problem and Formulation

We focus on flexible job-shop scheduling problems composed of the following elements:

• Jobs.J = {J1, · · · , Jn} is a set ofn jobs to be scheduled. Each jobJi consists of a predetermined
sequence of operations.Oi,j is the operationj of Ji. All jobs are released at time 0.

• Machines.M = {M1, · · · ,Mm} is a set ofm machines. Each machine can process only one op-
eration at a time. And each operation can be processed without interruption during its performance
on one of the set of machines. All machines are available at time 0.

• Flexibility. The multi-objective FJSP usually is classified into two types as follows:

– Total FJSP (T-FJSP): each operation can be processed on any machine ofM .

– Partial FJSP (P-FJSP): each operation can be processed on one machine of subset ofM .

• Constraints. The constraints are rules that limit the possible assignments of the operations. They
can be divided mainly into following situations:

– Each operation can be processed by only one machine at a time (disjunctive constraint).

– Each operation, which has started, runs to completion (non-preemption condition).

– Each machine performs operations one after another (capacity constraint).

– Although there are no precedence constraints among operations of different jobs, the prede-
termined sequence of operation for each job forces each operation to be scheduled after all
predecessor operations (precedence/conjunctive constraint).

– the machine constraints emphasize the operations can be processed only by the machine from
the given set (resource constraint).

• Objective(s). Most of the research reported in the literature is focused on the single objective
case of the problem, in which the objective is to find a schedule that has minimum time required
to complete all operations (minimum makespan). Some other objectives, such as flow time or
tardiness are also important like the makespan. Currently it has been paid more attentions to
investigate the problem from a multiobjective perspective. It is desirable to generate many near-
optimal schedules considering multiple objectives.
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To formulate the objective, defineCi,j,k (i = 1, 2, · · · , n; j = 1, 2, · · · , a; k = 1, 2, · · · ,m) as the
completion time that the machineMk finishes thej-th operationOi,j of job i;

∑
Ck represents the time

that the machineMk completes the processing of all the assigning jobs. DefineCsum =
∑m

k=1(
∑

Ck)
as the flowtime, andCmax = max{

∑
Ck} as the makespan. The problem is thus to both determine an

assignment and a sequence of the operations on all machines that minimize the criteria:

• The sum of the completion times (flowtime):Csum.

• the maximum completion time (makespan):Cmax.

Let A(t) be the set of operations being processed at timet, and letri,j,k = 1 if operationj of job i is
assigned on machinek to be processed andri,j,k = 0 otherwise. Letdi,j denote the duration (processing
time) of operationj of job i. The conceptual model of the multi-objective FJSP can be formulated the
following way:

Minimize f(Cmax, Csum) (1)

subject to :

Ci,j,k ≤ Ci,j+1,k − di,j+1. j = 1, · · · , a − 1. (2)

∑

j∈A(t)

ri,j,k ≤ 1, k ∈ M ; t ≥ 0. (3)

Ci,j,k ≥ 0, i = 1, · · · , n. (4)

Minimizing Csum asks the average job finishes quickly, at the expense of the largest job taking a long
time, whereas minimizingCmax, asks that no job takes too long, at the expense of most jobs taking a long
time. Minimization ofCmax would result in maximization ofCsum. The weighted aggregation is the
most common approach to the problems. According to this approach, the objectives,f1 = min{Csum}
andf2 = min{Cmax}, are summed to a weighted combination:

f = min(w1f1 + w2λf2) (5)

whereλ is the scaling factor, which is the average number of machines per operation;w1 andw2 are non-
negative weights, andw1 + w2 = 1. These weights can be either fixed or adapt dynamically during the
optimization [48]. The fixed weighted aggregation (1/2) is used in the paper. Alternatively, the weights
can be changed gradually according to the Eqs. (6) and (7). The variation for different values ofw1 and
w2 (R = 200) are illustrated in Fig. 1.

w1(t) = |sin(2πt/R)| (6)

w2(t) = 1 − w1(t) (7)

Definition 3.1. A flexible job-shop scheduling problem can be defined as
∏

= (J,O,M, f). The key
components are jobs, operations and machines. For the sake of simplify, the scheduling problem also be
represented in tripleP = (J,O,M).
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Figure 1. Dynamic weight variation.

The complexity of FJSP increases with the number of constraints imposed and the size of search
space employed [49]. Except for some highly restricted special cases, very simple special cases of FJSP
are already strongly NP-hard. For the FJSP, the size of search space is(n!)m, and for this reason, it
is computationally infeasible to try every possible solution. This is because the required computation
time increases exponentially with the problem size. In practice, many real-world FJSPs have a larger
number of jobs and machines as well as additional constraints and flexibilities, which further increase its
complexity. For the same number of machines and jobs, the P-FJSP is more difficult to solve than the
T-FJSP. Therefore, the P-FJSP is transformed to the T-FJSP by adding ‘infinite processing times’ to the
unused machines and to solve the latter instead in [37]. However, although the P-FJSP is a generalization
of the T-FJSP, Hoet al. illustrated the distinguish between the problem types of T-FJSP and P-FJSP [34].

4. PSO algorithms for FJSP

For applying the particle swarm algorithm successfully forany problem, one of the key issues is how to
map the problem solution to the particle space, which affects its feasibility and performance [50]. We
introduce a novel multi-swarm approach to explore the better solutions for the FJSP. In this section, we
firstly review PSO briefly and discuss how to solve the FJSP using multi-swarm algorithms.

4.1. Review of standard PSO

The standard PSO model consists of a swarm of particles moving in ad-dimensional search space where
the fitnessf can be calculated as a certain quality measure. Each particle has a position represented by
a position-vector~xi (i is the index of the particle), and a velocity represented by avelocity-vector~vi.
Each particle remembers its own best position so far in a vector ~pi, and itsj-th dimensional value ispi,j.
The best position from the swarm thus far is then stored in a vector ~p∗, and itsj-th dimensional value
is p∗j . During the iteration timet, the update of the velocity from the previous velocity is determined by
Eq. (8). Subsequently, the new position is determined by thesum of the previous position and the new
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velocity by Eq. (9).

vi,j(t) = wvi,j(t − 1) + c1r1(pi,j(t − 1) − xi,j(t − 1))

+ c2r2(p
∗
j(t − 1) − xi,j(t − 1))

(8)

xi,j(t) = xi,j(t − 1) + vi,j(t) (9)

wherer1 and r2 are the random numbers, uniformly distributed within the interval [0,1] for thej-th
dimension ofi-th particle. c1 is a positive constant termed as the coefficient of the self-recognition
component;c2 is a positive constant termed as the coefficient of the socialcomponent. The variablew
is the inertia factor, for which value is typically setup to vary linearly from 1 to 0 during the iterated
processing. From Eq. (8), a particle decides where to move next, considering its own experience, which
is the memory of its best past position, and the experience ofits most successful particle in the swarm. In
the particle swarm model, the particle searches the solutions in the problem space within a range[−s, s]
(If the range is not symmetrical, it can be translated to the corresponding symmetrical range.) In order to
guide the particles effectively in the search space, the maximum moving distance during one iteration is
clamped in between the maximum velocity[−vmax, vmax] given in Eq. (10), and similarly for its moving
range given in Eq. (11):

vi,j = sign(vi,j)min(|vi,j| , vmax) (10)

xi,j = sign(xi,j)min(|xi,j| , xmax) (11)

The value ofvmax is ρ × s, with 0.1 ≤ ρ ≤ 1.0 and is usually chosen to bes, i.e. ρ = 1. The pseudo-
code for particle-search is illustrated in Algorithm 1. Theparticle swarm algorithm can be described
generally as a population of vectors whose trajectories oscillate around a region which is defined by
each individual’s previous best success and the success of some other particle. Bergh and Engelbrecht
[51] overviewed the theoretical studies, and extend these studies to investigate particle trajectories for
general swarms to include the influence of the inertia term. They also provided a formal proof that each
particle converges to a stable point. It has been shown that the trajectories of the particles oscillate as
different sinusoidal waves and converge quickly. Liu and Abraham [52] analyze the chaos and effects of
the change in the velocities of particles. Eberhart and Kennedy called the two basic methods as “gbest
model” and “lbest model” [1]. In thelbest model, particles have information only of their own andtheir
nearest array neighbors’ best, rather than that of the wholeswarm. Namely, in Eq. (8),gbest is replaced
by lbest in the model. Thelbest model allows each individual to be influenced by some smaller number of
adjacent members of the population array. The particles selected to be in one subset of the swarm have
no direct relationship to the other particles in the other neighborhood. Typicallylbest neighborhoods
comprise exactly two neighbors. When the number of neighbors increases to all but itself in thelbest
model, the case is equivalent to thegbest model. Unfortunately there is a large computational cost to
explore the neighborhood relation in each iteration. In thegbest model, the trajectory for each particle’s
search is influenced by the best point found by any member of the entire population. The best particle
acts as an attractor, pulling all the particles towards it. Some previous studies has been shown that the
trajectories of the particles oscillate in different sinusoidal waves and converge quickly in the “gbest
model” algorithm [53, 54]. During the iteration, the particle is attracted towards the location of the best
fitness achieved so far by the particle itself and by the location of the best fitness achieved so far across
the whole swarm [55, 56].
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Algorithm 1 Particle Swarm Algorithm
01. Begin
02. Parameter settings and initialize swarm
03. Evaluation
04. Locate leader
05. t = 1
06. While (the end criterion is not met) do
07. For each particle
08. Update velocity
09. Update position
10. Evaluation
11. Updatepbest
12. EndFor
13. Update leader
14. t + +
15. End While
16. End

4.2. Encoding Representations and Decoding Alignment

Encoding representation can be extremely important when trying to find solutions to a problem in a
heuristic or metaheuristic algorithm. The data structures, such as the particle position, plus the algorithm
combine to make efficient programs. Better efficiency of search can be achieved by modifying the
encoding representation and its related operators so as to generate feasible solutions and avoiding the use
of a repair mechanism. A bad encoding representation can increase the size of the search space or slow
down the algorithm if too many repair operators are needed toensure the representation is valid.

Chenget al. [27], Kleeman and Lamont [36] introduced the taxonomy of how EAs represent job-shop
problems. These representations can be classified as eitherdirectly encoded approaches or indirectly
coded approaches. With a direct approach, a schedule is encoded into the chromosome. The EA then
operates on these schedules in an effort to find the best schedule. For direct approaches, there are five
different ways the EA can be encoded:

• Operation-based

• Job-based

• Job pair relation-based

• Completion time-based

• Random keys

Indirect approaches are chromosome representations that do not directly encode the schedule into the
chromosome. There are four indirect approaches:

• Preference list-based

• Priority rule-based
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Table 1. An example of the P-FJSP.

M1 M2 M3

J1 O1,1 4 5 XXX

O1,2 9 2 2

O1,3 XXX 6 3

J2 O2,1 6 5 XXX

O2,2 3 3 5

• Disjunctive graph-based

• Machine-based

For encoding representations, we have to consider time and space computational complexity, the
need to maintain solution feasibility. To solve the FJSP, there are the three important factors:

• Flexible

• Length

• Availability

There are an fixed sequence for operations in each job (precedence constraints). But there are no
precedence constraints among operations of different jobs. If the job and the operations are ordered
beforehand, there is not enough flexible between jobs. Genet al. [57] proposed a perfect method: they
name all operations for a job with the same symbol (for example, the corresponding job index) and
then interpret them according to the order of occurrences inthe sequence of a given chromosome. All
permutations of the chromosome yield a valid schedule. The chromosome length is

∑n
i=1 ai, wheren is

the number of jobs andai is the number of operations in jobi. It is possible for this kind of representation
to cause some invalid candidate solutions after crossover and mutation operators. For example, one initial
chromosome,{0, 1, 0, 1, 0}, is valid for the problem in Table 1 (0s denote the operationsof J1, and 1s
denote the operations ofJ2). A mutation operator bring out a invalid one,{0, 1, 1, 1, 0} or {0, 1, 0, 1, 1}.
In the new chromosome, the number of the candidate symbol, 0,is less than the number of operations in
J1. And the number of the candidate symbol, 1, is more than the number of operations inJ2. It would also
be confronted with another difficulty: how to check effectively which machine can process the assigning
operations when it deals with P-FJSP. For the same number of machines and jobs, Kacemet al. [37]
transformed the P-FJSP to the T-FJSP by adding ‘infinite processing times’ to the unused machines and to
solve it. Some individuals would be evaluated to ‘infinite’.This increases the overall time complexity due
to the presence of redundant assignments. Hoet al. [34] proposed a new chromosomal representation,
which has two components: operation order and machine selection. Operation order component is similar
to Gen’s method. Each individual is obtained from this schedule by replacing each operation by the
corresponding job index. By reading the data from left to right and increasing operation index of each
job, a feasible schedule is always obtained. The machine selection component consists of a chromosome
of size

∑n
i=1 ai. Each allele of the chromosome is a sub-chromosome, which lists the preference which

machine would process the operation. For the problem in Table 1, one possible encoding is shown in
Fig. 2. This method inherits the advantages of both the operation-based chromosome representation and
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Figure 2. Operation-Order-Machine-Selection representation.

the preference list-based representation. The chromosomelength is
∑n

i=1 ai +
∑n

i=1 ai ∗ bj, wheren is
the number of jobs,ai is the number of operations in jobi, bj is the number of machines which operation
Oi,j can be assigned on. This chromosome representation has to consider the availability of machines that
process operations so that the decoding processing reducesthe search space size. But it is possible that
one operation is assigned on more than one machine after crossover and mutation operators. Therefore,
a repair mechanism to maintain feasibility is required. In addition, this representation is complex and
redundant for the T-FJSP, since the machine selection component seems too long.

Due to the continuous characters of the positions of particles in standard PSO model, its encoding
scheme cannot be directly adopted for the FJSP. So one of the most important problems in applying PSO
to FJSP is to find how to map the problem solution to the particle. In our PSO algorithms, the position
representation of the particles also has two components: operation order and machine selection. But it is
with a variable length strategy.

The first part, operation order component provides the orderof operations. For convenience, we will
decompose all the jobs to atomic operations, and all operations for a job is signed with the corresponding
job index. Then we map all the operations and jobs to the particles’ positions. The positions are ranked to
the corresponding job index by incorporating Ranked Order Value (ROV) rule [58] based on the Smallest
Position Value (SPV) encoding rule [59]. In the ROV rule, thefirst SPV(s) of a particle is handled and
assigned a smallest rank value 1(s). Then, the SPV(s) will behandled and assigned a rank value 2(s).
With the same way, all the position values will be dealt with to convert the position information of a
particle to a job permutation. There are two jobs, three operations in job 1, and two operations in job
2 as shown in Table 1 to illustrate the rank rule. In the instance (n = 2, p1 = 3, p2 = 2), position
information isXi = [2.9, 0.6, 3.7, 1.8, 1.2]. Becausexi,2, xi,5, xi,4 is the first three SPV of the particle,
they are handled firstly and assigned rank value 1 as the job index of job 1, then the remain SPV,xi,1

andxi,3 are assigned rank value 2 as the job index of job 2. Thus, the operation order is obtained, i.e.,
{O2,1, O1,1, O2,2, O1,2, O1,3} as shown in Fig. 3.

The second part, machine selection component is variable length according to the problems. If the
Average number of Machines per Operation (AMO) is larger than the half of number of machines, we
encode each dimension with a random number in the interval[1,m+1). Each dimension of the particle’s
position maps one operation, and the value of the position indicates the machine number to which this
task/operation is assigned during the course of particle swarm algorithm. So the value of a particle’s
position should be integer. But after updating the velocityand position of the particles, the particle’s
position may appear real values such as 1.4, etc. It is meaningless for the assignment. Therefore, in
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Figure 3. Representation of position values and the corresponding operation order.

the algorithm we usually round off the real optimum value to its nearest integer number. In this part, the
sequence of the operations will be changed during the iteration according to the first part, operation order
component. The feasible different sequence schedule of theoperations between different jobs comes
from the operation order. If AMO is less than or equal to the half of number of machines, we extend it to
feasible machine representation. According to the operation order, each operation has a sub-sequence for
machine selection, which lists the preference which machine would process the operation. The first SPV
of the sub-sequence is assigned a rank value 1, other(s) are 0. The corresponding machine is selected
if its value is 1. Since the AMO of the P-FJSP in Table 1 is 2.4, larger than 1.5, its machine selection
component can be encoded as shown in Fig. 4. Only for demonstration, we also use the same sample to
illustrate our encoding representation as shown in Fig. 5. The variable length representation allows the
algorithm to maintain a balance between the flexibility of FJSP and search space, and to converge on the
better results effectively.

Figure 4. Representation of position values and the corresponding single-machine selection.

The standard PSO algorithm uses a swarm of particles. In the search process, particles are supposed
to follow the best particle from the swarm. As above remember, its performance deteriorates as the di-
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Figure 5. Representation of position values and the corresponding multi-machine selection.

mensionality of the search space increases, especially forthe multi-objective FJSP involving large scale.
PSO often demonstrates faster convergence speed in the firstphase of the search, and then slows down
or even stops as the number of generations is increased. Oncethe algorithm slows down, it is difficult
to achieve better scheduling solutions. Bergh and Engelbrecht [60] investigated effects of swarm size on
cooperative particle swarm optimizations. They proposed amulti-swarm cooperative particle swarm op-
timizer, which takes then-dimensional solution vector and breaks it inton one-dimensional components.
Each component is then optimized by a separate PSO. The objective function is evaluated using a vector
formed by concatenating the components from then swarms to again form ann-dimensional vector. The
algorithm forms solution vectors by combining different vectors from different swarms, effectively cre-
ating more diversity out of fewer particles. There is more better balance between the dimension and the
number of iterations. Grosanet al. [4] divided the swarm of PSO into multiple independent sub-swarms
so as to obtain multiple different points for the geometrical place problems. By considering different
sub-swarms, the number of solutions which can be obtained atthe end of the search process might be
at most equal to the number of sub-swarms. The algorithm is successful to solve the geometrical place
problems. Since our encoding representation consists of two components, we split the swarm of par-
ticles into two independent sub-swarms for the FJSP. The operation order component is mapped to the
first sub-swarm, which takes theb-dimensional solution vector (b =

∑n
i=1 ai). The second sub-swarm

deals with the machine selection component. The two sub-swarms search the optima cooperatively and
maintain the balance between diversity of particles and search space.

In our encoding representations, we can consider particle’s position encoding as the binary repre-
sentation of an integer. And the step size is equal to 1, i.e.,the dimension of the search space is then
1. In practice, when the binary string is too long for a large scale problem, it has too high dimension
for us to use it as an integer. It is time-consuming for each iteration. So we split it into a small number
(sayH) of shorter binary strings, each one is seen as an integer. Then the dimension of the problem is
not anymore 1, butH. The swarm algorithm with two strategies is so called as Bi-metrics Binary PSO.
Fig. 6 illustrates the direct encoding representation. AndFig. 7 illustrates the compositive encoding
representation.

Since the particle’s position indicates the potential schedule, the position can be “decoded” to the
scheduling solution. It is to be noted that the solution willbe unfeasible if it violates the sequence
constraint (2). The operations must be started only after the completion of the previous latest operation
in the sequence operation. The best situation is the starting point of the operation in alignment with the
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Figure 6. Bi-metrics Binary Representation - Direct encoding.

Figure 7. Bi-metrics Binary Representation - Compositive encoding.

ending point of its previous latest operation. After all theoperations have been processed, we get the
feasible scheduling solution and then calculate the cost ofthe solution.

4.3. Multi-Swarm PSO

To employ a multi-swarm the solution vector is split amongstthe different populations according to some
rule; the simplest of the schemes does not allow any overlap between the spaces covered by different
populations. To find a solution to the original problem, representatives from all the populations are
combined to form the potential solution vector, which, in turn, is passed on to the error function. This
adds a new dimension to the survival game: cooperation between different populations [51, 63, 64].

The different individual is separated into different groupto map the operation order and machine
selection respectively, which is favorable and reasonable. To match the two component characteristics,
we introduce a multi-swarm search algorithm for them. In thealgorithm, all particles are clustered spon-
taneously into two different groups of the whole swarm. One is mapped to the operation order, and
another to the machine selection. Each group consists of multiple sub-swarms. In the same group, every
particle can connect more than one sub-swarm, and a crossover neighborhood topology is constructed
between different sub-swarms. The particles in the same sub-swarm would carry some similar functions
as possible and search their optimal. Each sub-swarm would approach to its appropriate position (solu-
tion), which would be helpful for the whole swarm to keep in a good balance state. Fig. 8 illustrates a
multi-swarm topology. In the swarm system, a swarm with 30 particles is organized into 10 sub-swarms,
which one consists of 5 particles. Particles 3 and 13 have themaximum membership level, 3. During the
iterated process, the particle updates its velocity following by the location of the best fitness achieved so
far by the particle itself and by the location of the best fitness achieved so far across all its neighbors in
all sub-swarms it belongs to. We consider the multi-swarm algorithm more about operation order update
and others for machine selection in the multi-objective Flexible Job-shop Scheduling Problems. The
multi-swarm algorithm for FJSP is illustrated as follows:

Step 1. Given s swarms,n particles in each swarm, encode the firsts/2 swarms according to the
operation order, and encode other swarms according to the machine selection. Initialize the positions
and the velocities for all the particles randomly. Initialize other parameters.
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Step 2. For the operation order swarms and machine selections the multiple sub-swarmsn are organized
respectively into a crossover neighborhood topology. A particle can join more than one sub-swarm.
Each particle has the maximum membership levell, and each sub-swarm accommodates default number
of particlesm.

Step 3. Decode the positions and evaluate the fitness for each particles.

Step 4. Find the best particle in the swarm, and find the best one in each sub-swarms. If the “global best”
of the swarm is improved,noimprove = 0, otherwise,noimprove = 1. Update velocity and position
for each particle at the iterationt.

4.01 Form = 1 tosubs
4.02 ~p∗ = argminsubsm

i=1 (f(~p∗(t − 1)), f(~x1(t)),
4.02 f(~x2(t)), · · · , f(~xi(t)), · · · , f(~xsubsm

(t)));
4.03 Forss = 1 tosubsm

4.04 ~pi(t) = argmin(f(~pi(t − 1)), f(~xi(t));
4.05 Ford = 1 toD
4.06 Update thed-th dimension value of~xi and~vi

4.06 according to Eqs. (8), (10), (9), and (11);
4.07 Nextd
4.08 Nextss
4.09 Nextm

Step 5. If noimprove = 1, goto Step 2, the topology is re-organized. If the end criterion is not met, goto
Step 3. Otherwise, output the best solution, the fitness.

5. Algorithm analysis

For analyzing the convergence of the multi-swarm algorithm, we first introduce the definitions and lem-
mas [65, 66, 67], and then theoretically prove that the algorithm converges with a probability 1 or strongly
towards the global optimal.

Xu, et al [68] analyzed the search capability of an algebraic crossover through classifying the in-
dividual space of genetic algorithms, which is helpful to comprehend the search of genetic algorithms
such that premature convergence and deceptive problems [69] could be avoided. In this subsection,
we also attempt to theoretically analyze the performance ofthe multi-swarm algorithm with crossover
neighborhood topology. For the sake of convenience, let crossover operator|c denote the wheeling-
round-the-best-particles process.

Consider the problem (P ) as
(P ) = min{f(~x) : ~x ∈ D} (12)

where~x = (x1, x2, · · · , xn)T , f(~x) : D → R is the objective function andD is a compact Hausdorff
space. Applying our algorithm the problem (P ), it can be transformed toP ′ as

(P ′) =

{

minf(~x)

~x ∈ Ω = [−s, s]n
(13)
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Figure 8. A multi-swarm topology.

whereΩ is the set of feasible solutions of the problem. A swarm is a set, which consists of some feasible
solutions of the problem. AssumeS as the encoding space ofD. A neighborhood function is a mapping
N : Ω → 2Ω, which defines for each solutionS ∈ Ω a subsetN (S) of Ω, called a neighborhood. Each
solution inN (S) is a neighbor ofS. A local search algorithm starts off with an initial solution and then
continually tries to find better solutions by searching neighborhoods [15]. Most generally said, in swarm
algorithms the encoding typesS of particles in the search spaceD are often represented as strings of a
fixed-lengthL over an alphabet. Without loss of generality,S can be described as

S = zm × · · · × zm
︸ ︷︷ ︸

L

(14)

wherezm is a finite field about integer numbermod m. Most often, it is the binary alphabet,i.e.
m = 2.

Proposition 5.1. If k alleles are ‘0’s in the nontrivial idealΩ, i.e. L − k alleles are uncertain, thenθΩ

partitionsΩ into 2k disjoint subsets as equivalence classes corresponding to Holland’s schema theorem
[70, 71], i.e., each equivalence class consists of some ‘1’s whichk alleles inΩ with ‘0’ are replaced by
‘1’s. Let A ∈ S/θΩ, then there is an minimal elementm of A under partial order(S,∨,∧,¬), such that
A = {m ∨ x | x ∈ Ω}.

Theorem 5.1. Let A, B, C are three equivalence classes onθΩ, whereθΩ is the congruence relation
aboutΩ. ∃ x ∈ A, y ∈ B, andx |c y ∈ C, thenC = {x |c y | x ∈ A, y ∈ B}.
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Proof:
Firstly, we verify that for anyd1, d2 ∈ Ω, if x |c y ∈ C, then(x ∨ d1) |c (y ∨ d2) ∈ C. In fact,

(x ∨ d1) |c (y ∨ d2) =(x ∨ d1)c ∨ (y ∨ d2)c̄

(xc ∨ yc̄) ∨ (d1c ∨ d2c̄)

(x |c y) ∨ (d1c ∨ d2c̄)

(15)

Obviously,(d1c∨ d2c̄) ∈ Ω, so(x∨ d1) |c (y ∨ d2) ≡ (x |c y)( mod θΩ), i.e. (x∨ d1) |c (y ∨ d2) ∈ Ω.
Secondly, from Proposition 5.1,∃m,n, d3, d4 ∈ Ω of A,B, such thatx = m ∨ d3, y = n ∨ d4. As a

result of analysis in Eq.(15),x |c y ≡ (m |c n)( mod θΩ), i.e., m |c n ∈ C.
Finally, we verify thatm |c n is a minimal element ofC and(m |c n) ∨ d = (m ∨ d) |c (n ∨ d). As

a result of analysis in Eq.(15), ifd1 = d2 = d, thenm |c n ∨ d = (m ∨ d) |c (n ∨ d). Thereforem |c n
is a minimal element ofC.

To conclude,C = {(m |c n) ∨ d | d ∈ Ω} = {x |c y | x ∈ A, y ∈ B}. The theorem is proven. ⊓⊔

Proposition 5.2. Let A, B are two equivalence classes onθΩ, and there existx ∈ A, y ∈ B, such
that x |c y ∈ C, then,x |c y makes ergodic searchC while x andy make ergodic searchA andB,
respectively.

Definition 5.1. (Convergence in terms of probability)
Let ξn a sequence of random variables, andξ a random variable, and all of them are defined on the same
probability space. The sequenceξn converges with a probability ofξ if

lim
n→∞

P (|ξn − ξ| < ε) = 1 (16)

for everyε > 0.

Definition 5.2. (Convergence with a probability of 1)
Let ξn a sequence of random variables, andξ a random variable, and all of them are defined on the same
probability space. The sequenceξn converges almost surely or almost everywhere or with probability of
1 or strongly towardsξ if

P

(

lim
n→∞

ξn = ξ

)

= 1; (17)

or

P

( ∞⋂

n=1

⋃

k≥n

[|ξn − ξ| ≥ ε]

)

= 0 (18)

for everyε > 0.

Theorem 5.2. Let ~x∗ is the global optimal solution to the problem (P ′), andf∗ = f(~x∗). Assume that
the clubs-based multi-swarm algorithm provides position series~xi(t) (i = 1, 2, · · · , n) at timet by the
iterated procedure.~p∗ is the best position among all the swarms explored so far,i.e.

~p∗(t) = arg min
1≤i≤n

(f(~p∗(t − 1)), f(~pi(t))) (19)

Then,

P

(

lim
t→∞

f(~p∗(t)) = f∗

)

= 1 (20)
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Proof:
Let

D0 = {~x ∈ Ω|f(~x) − f∗ < ε} (21)

D1 = Ω \ D0

for everyε > 0.
While the different swarm searches their feasible solutions by themselves, assume∆p is the dif-

ference of the particle’s position among different club swarms at the iteration timet. Therefore−s ≤
∆p ≤ s. Rand(−1, 1) is a normal distributed random number within the interval [-1,1]. According
to the update of the velocity and position by Eqs. (8)∼(9), ∆p belongs to the normal distribution,i.e.
∆p ∼ [−s, s]. During the iterated procedure from the timet to t + 1, let qij denote that~x(t) ∈ Di and
~x(t + 1) ∈ Dj . Accordingly the particles’ positions in the swarm could beclassified into four states:
q00, q01, q10 andq01. Obviouslyq00 + q01 = 1, q10 + q11 = 1. According to Borel-Cantelli Lemma and
Particle State Transference [56], proving by the same methods,q01 = 0; q00 = 1; q11 ≤ c ∈ (0, 1) and
q10 ≥ 1 − c ∈ (0, 1).

For∀ε > 0, let pk = P{|f(~p∗(k)) − f∗| ≥ ε}, then

pk =

{

0 if ∃T ∈ {1, 2, · · · , k}, ~p∗(T ) ∈ D0

p̄k if ~p∗(t) /∈ D0, t = 1, 2, · · · , k
(22)

According to Particle State Transference Lemma,

p̄k = P{~p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (23)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1 − c
< ∞. (24)

According to Borel-Cantelli Lemma,

P

( ∞⋂

t=1

⋃

k≥t

|f(~p∗(k)) − f∗| ≥ ε

)

= 0 (25)

As defined in Definition 5.2, the sequencef(~p∗(t)) converges almost surely or almost everywhere or
with probability 1 or strongly towardsf∗. The theorem is proven. ⊓⊔

6. Experiment Settings, Results and Discussions

The algorithm procedure described in Section 4 has been implemented on Intel Corer DuoTM CPU
1.73 GHz processor with 1G memory. To illustrate the effectiveness and performance of the proposed
algorithm, three representative instances based on practical data have been selected. Three problem
instances(J8, O27,M8), (J10, O30,M10) and(J15, O56,M10) are taken from Kacemet al. [37, 38,
72]. In our experiments, the algorithms used for comparisonwere GA (Genetic Algorithm) [76, 77],
SPSO (standard PSO) [1], and MPSO (Multi-swarm PSO). These algorithms share many similarities.
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Table 2. Parameter settings for the algorithms.

Algorithm Parameter name Value

Size of the population (even)(int)(10 + 2 ∗ sqrt(D))

GA Probability of crossover 0.8

Probability of mutation 0.01

Swarm size (even)(int)(10 + 2 ∗ sqrt(D))

Self coefficientc1 0.5 + log(2)

PSO(s) Social coefficientc2 0.5 + log(2)

Inertia weightw 0.91

Clamping Coefficientρ 0.5

GA is powerful stochastic global search and optimization methods, which are also inspired from the
nature like the PSO. Genetic algorithms mimic an evolutionary natural selection process. Generations
of solutions are evaluated according to a fitness value and only those candidates with high fitness values
are used to create further solutions via crossover and mutation procedures. Both methods are valid and
efficient methods in numeric programming and have been employed in various fields due to their strong
convergence properties. Specific parameter settings for the algorithms are described in Table 2, whereD
is the dimension of the position. For the small scale problem, for example,(J8, O27,M8), the maximum
number of iterations is200 in each trial. For other problems, the maximum number of iterations is 200.
Each experiment (for each algorithm) was repeated 10 times with different random seeds. The average
fitness values of the best solutions throughout the optimization run were recorded. The averages (f )
and the standard deviations (std) were calculated from the 10 different trials. The standarddeviation
indicates the differences in the results during the 10 different trials. Usually another emphasis will be to
generate the schedules at a minimal amount of time. So the completion time for 10 trials were used as
one of the criteria to improve their performance.

Figs. 9, 10 and 11 illustrate the performance for the three algorithms during the search processes
for the three FJSPs. Empirical results are illustrated in Table 3. In general. MPSO could be an ideal
approach for solving the large scale problems when other algorithms failed to give a better solution.

Table 3. Comparing the results for FJSPs.

Instance Items GA SPSO MPSO

Best 221 200 161

(J8, O27, M8) average 246.6999 226.6999 180.3999

std ±20.8856 ±10.8263 ±9.4148

Best 139 133 74

(J10, O30, M10) average 153.8000 142.1999 97.5000

std ±8.1092 ±6.8818 ±12.7220

Best 276 231 168

(J15, O56, M10) average 292.2000 251.3999 196.1000

std ±10.0677 ±12.2572 ±13.9316
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Figure 9. The performance of the algorithms for(J8, O27, M8) FJSP.

Figure 10. The performance of the algorithms for(J10, O30, M10) FJSP.
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Figure 11. The performance of the algorithms for(J15, O56, M10) FJSP.

7. Conclusions

Particle swarm optimization algorithm has exhibited good performance across a wide range of real world
applications but not much work has been reported of its usageto solve the multi-objective Flexible
Job-shop Scheduling Problems (FJSP) very well. Initial difficulty consists of how to map the problem
solution to the particle space. In other words, encoding representation can be extremely important when
trying to find solutions to the problem in the metaheuristic algorithm. The data structures, such as the
particle position, plus the algorithm combine to make efficient programs. Better efficiency of search can
be achieved by modifying the encoding representation and its related operators so as to generate feasible
solutions and avoiding the use of a repair mechanism. A bad encoding representation can increase the
size of the search space or slow down the algorithm if too manyrepair operators are needed to ensure
the representation is valid. We have to be confronted with the second difficulty of how to ensures a good
trade-off between exploration and exploitation in the algorithm.

In this paper, we modeled the scheduling problem for the multi-objective Flexible Job-shop Schedul-
ing Problems (FJSP) and make an attempt to formulate and solve the problem using a multi-swarm
approach. We extend the representations of the position andvelocity of the particles in PSO. In our PSO
algorithms, the position representation of the particles has two components: operation order and machine
selection, and it is with a variable length strategy. In our encoding representations, we considered parti-
cle’s position encoding as the binary representation of an integer. Bi-metrics Binary encoding approach
is used efficiently. The different individual is separated into different group to map the operation order
and machine selection respectively, which is favorable andreasonable. To match the two component
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characteristics, we introduce a multi-swarm search algorithm. In the algorithm, all particles are clustered
spontaneously into two different groups of the whole swarm.One is mapped for the operation order, and
another for the machine selection. Each group consists of multiple sub-swarms. In the same group, every
particle can connect to more than one sub-swarm, and a crossover neighborhood topology is constructed
between different sub-swarms. The particles in the same sub-swarm would carry some similar func-
tions as possible and search for their optimal. Each sub-swarm would approach its appropriate position
(solution), which would be helpful for the whole swarm to keep in a good balance state. The proposed
multi-swarm PSO algorithm is illustrated theoretically sothat it converges with a probability of 1 towards
the global optimum. The details of the implementation for the multi-objective FJSP are provided and its
performance was compared using computational experiments. The empirical results have shown that the
proposed algorithm is an available and effective approach for the multi-objective FJSP, especially for
large scale problems.
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