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Abstract— In this paper, a new variant of Teaching-Learning 
based Optimization (TLBO), termed as Elitist Teaching-Learning 
Opposition based (ETLOBA) Algorithm has been proposed for 
numerical function optimization. The proposed method is 
empowered with two mechanisms to reach the accurate global 
optimum with less time complexity. One of them is elitism, which 
strengthens the capability of optimization method by retaining 
the best solution obtained so far, on the other hand Opposition 
method helps in ameliorating the capability of searching. As 
ETLOBA had an advantage of both Elitism and Opposition 
based learning, hence it tries to obtain optimum solutions with 
guaranteed convergence. The proposed method has been tested 
on several benchmark functions and the results obtained by 
ETLOBA are been compared with new state-of-art optimization 
methods like ABC, HS etc., shows the superiority of the proposed 
approach in solving continuous optimization problems. 

Keywords-oppostion learning; global optimization; elitism; 
artificial bee colony;  

I.  INTRODUCTION 
Teaching-Learning-Based Optimization (TLBO) is one of 

the new meta-heuristic optimization algorithm proposed by 
Rao et al. [1] for continuous non-linear large-scale 
optimization. TLBO method relies on the philosophy of 
teaching and learning i.e., optimization procedure is structured 
based on the effect of the influence of a teacher on the output 
of learners in a class. In a short time of its evolution it has been 
applied to various practical optimization problems, few of the 
challenging real world applications include mechanical design, 
design of planar steel frames, welding [2-4] and so on. 

Though Rao et al. [1] reported that TLBO has outperformed 
various state-of-art methods when applied to continuous 
function optimization, but there are few inherent drawbacks, 
which restrict the algorithm to perform well only on few 
benchmarks and functions having less dimensions. One of the 
major disadvantages of TLBO is the convergence rate, and it 
gets even worse when dealt with higher dimension problems. 
The performance gets even worse while solving the functions 
like Rosenbrock and hence some mechanism has to be 
incorporated to achieve the highest performance.  

To overcome the drawbacks and to enjoy the results of 
TLBO we proposed a new Elitist-Teaching-Learning 
Opposition based Algorithm. Elitism is a concept utilized most 

in the evolutionary algorithms where during every generation 
the worst solutions are replace by elite solutions. This helps the 
algorithm in always retaining the values closer to the optimum 
and discarding the worst values obtained so far. While on the 
other hand Opposition helps in increasing the exploration 
capability by making algorithm to search in the diverse areas 
and hence this opposition takes care about the global 
exploration. 

The remainder of paper is structured as follows. In Section 
II we discuss about basic version of TLBO. The proposed 
ETLOBA and the modifications made are briefed in Section 
III. Section IV provides detailed comparison of ETLOBA with 
remaining state of art optimization methods on various 
benchmark functions considered. Finally we put forth some 
conclusions and future scope in Section V.    

II. TEACHING-LEARNING-BASED OPTIMIZATION 
Like many other meta-heuristics, TLBO also draws its 

inspiration from the teaching-learning process in a class of 
teacher and the learners. Teacher tries to reach best harmony on 
the output of learners in a class, which can be obtained through 
their grades considered as the output. Output is appraised by 
means of exam conducted by the teacher.  

The TLBO is explained here is same to that of work carried 
out by Rao et al. [1]. Supposing two different teachers, T1 and 
T2, are teaching a subject with same content to the same merit 
level learners in two different classes. Distribution of marks 
obtained by the learners of two different classes evaluated by 
the teachers are depicted Figure1. A normal distribution is 
assumed for the obtained grades after taking an exam by the 
teachers. 

It is evident from Figure 1 that the teacher who deals with 
the learners in the class 2 is performing better than the teacher 
dealing with learners of class 1. This can be interpreted via the 
mean of the grades, M2, obtained by the learners in the class 2 
represents better results than M1. Hence from the Figure1 it can 
be concluded that a good teacher produces a better mean for the 
results of the learners. Learners also learn from interaction 
between themselves, which also helps in their results.  
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Fig 1. Distribution of Marks obtained by learners thought by two teachers 
 

Teacher is considered as the most knowledgeable person in 
the society and hence every teacher tries to disseminate 
knowledge among the class of learners to increase the 
knowledge level of the class and help learners to get good 
marks.  However, in practice a teacher can only move the mean 
of a class up to some extent depending on the capability of the 
class [1]. 

Although the teacher makes a maximum effort in teaching 
his/her learners, learners will gain knowledge according to the 
quality of teaching delivered by a teacher and the quality of 
learners present in class. There are other means in which 
learners can also gain knowledge by discussing, discovering 
and interacting with the other learners [1].    

In this method the population (individuals) is considered as 
a class of learners and different dimensions related to each 
individual are analogous to different subjects. Learners’ result 
is the fitness value and teacher being considered as the best 
value of iteration. TLBO consists of two phases i.e., Teacher 
phase and Learner phase. In Teacher phase, all the learners are 
updated based upon the teacher; on the other hand in Learner 
phase, all the learners are updated based on the other learner. 
Once the two phases are completed consequently, the teacher is 
also updated before progressing into next iteration. Like other 
stochastic based methods TLBO also progress iteratively 
towards the optimal solution. 
A. Teacher Phase 

At any ith iteration, let Mi be the mean and Ti be the teacher. 
Based on the skill and experience teacher Ti will try to move 
mean Mi towards its own level, and now the new mean 
corresponding to Ti will be designated as Mnew. An adaptive 
heuristic is used to updated the solution and is done according 
to the difference between the existing and the new mean given 
by  

Difference_Meani = randi Mnew −TFMi( )         (1) 
where TF is termed as teaching factor, which decides 

whether the value of mean is to be changed or not. The value of 
TF can be either 1 or 2, which is decided randomly with equal 
probability and randi is a random number in the range [0, 1]. 
The value of TF plays very vital role in updating the teacher 
and learner’s position based on the global minimum. The value 
of teaching factor (TF) is defined instantly in algorithm based 

on the learner’s position. Based on the Difference_Meani the 
existing solution is updated in teacher phase according to the 
following expression. 

Xnew,i = Xold,i +Difference_Meani            (2) 
where Xnew,i and Xold,i are the new and existing solutions 

corresponding to iteration i.    
B. Learner Phase 

In this phase learners increase their knowledge mainly by 
two different means: one through input from the teacher and 
other through interaction between their fraternities. In the 
course of time a learner may interact randomly with other 
learners with the help of communications, discussions, etc. If a 
leaner interacts with other learner who has more knowledge 
than him or her he tries to learn new things and tries to increase 
his knowledge. For a class of Pn learners, learner modification 
is carried via a pseudo code provided.   

 
Pseudo code of Learner Phase 

For i = 1 to Pn  

 Randomly select another learner Xj, such that i ≠ j  

IF f Xi( ) < f X j( )  

  Xnew,i = Xold,i + randi Xi − Xj( )  

ELSE 

  Xnew,i = Xold,i + randi X j − Xi( )  

 End IF 

End FOR 

 Accept Xnew if it gives a better function value.  

After one successful completion of Teacher and Lerner 
phase, algorithm is made to update teacher value before the 
start of next iteration. The same pseudo code is applicable for 
maximization problem also. The only difference for 
maximization is that, when two learners are considered, the 
value of a leaner is updated based on the learner providing 
maximum fitness value 

III. ELITIST TEACHING-LEARNING-OPPOSITION-BASED 
ALGORITHM 

A. Elitism 
Elitism is a mechanism to preserve the best individuals 

from generation to generation. It had been widely used in the 
field of evolutionary algorithms to obtain the solution with 
less computational effort [5]. In the TLBO algorithm after 
replacing the existing worst solutions with elite solutions at 
the end of learner phase, if the duplicate solutions exist then 
care is taken modify the duplicate solutions in order to avoid 
trapping in the local optima. There are many strategies to 
modify the obtained duplicate solutions and in this method we 
had modified duplicated solutions by mutation on randomly 
selected dimensions of the duplicate solutions before 
executing the next generation.  Now after every learner phase 



best solutions are retained and the teacher is being updated 
with the best solution obtained so far. Once the elitism has 
been introduced now the algorithm has to be further 
strengthened via increasing the global exploration capabilities 
which is done by using Opposition based learning rule. 

 

 
Fig 2 Flowchart of ETLOBA 

B. Opposition Based Optimization 
Let P = {x1, x2,..., xD} be a point in D-dimensional space, 

where x1, x2,..., xD ∈ R and xi ∈ [ai,bi ]  ∀i ∈ 1,2,...,D{ } . 

Now P ' = {x1
' , x2

' ,..., xD
' }   i.e., opposite point 

P ' = {x1
' , x2

' ,..., xD
' } is defined as [7, 8] 

  xi
' = ai + bi − xi            (3) 

Now, with above definition of opposite point the 
opposition-based optimization can be formulated as follows. 

Assuming f ⋅( )  is fitness function via which candidate fitness 
is measured and according to the above given definitions of 
P and P ' if f (P ' ) ≥ f (P) then the point P  can be replaced 
with P ' ; hence, the point and its opposite point are evaluated 
simultaneously in order to go with the fitter one.  

The step by step execution of ETLOBA involving elitism 
and opposition based learning is depicted in Figure 2.  

IV. EXPERIMENTS AND RESULTS OVER BENCHMARK 
FUNCTIONS 

In this section we validated the performance of proposed 
ETLOBA method over a test suite of 5-well known benchmark 
functions of different dimensions (D) ranging from 10 to 100. 
The mathematical representation and range of search (S) are 
recorded in Table I. All the functions have theoretical optima 
of 0 and to achieve this we had considered a termination 
criterion of 2000 functional evaluations (NFEs) for ETLOBA. 
An exception has been provided for function f5 (Rosenbrock), 
where 50 learners and total of 50,000 functional evaluations are 
considered. The obtained values of test functions for 100 
independent runs are recorded in Table II.   

Table I. Description of Benchmark Functions 

Function Mathematical Representation S 

Sphere f1(x

) = xi

2

i=1

D

∑  (-100, 100) 

Rastrigin f2 (x

) = [xi

2 −10cos(2π xi )+10]
i=1

D−1

∑  (-5.12, 5.12) 

Ackley 
f3(x

) = −20exp −0.2 1

D
xi
2
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D
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#
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&

'
(
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−exp 1
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%

&
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(-32, 32) 

Grienwank f4 (x

) = 1
4000

xi
2 − cos xi

i
"

#
$

%

&
'∏ +1

i=1

D

∑  (-600, 600) 

Rosenbrock f5(x

) = [100(xi+1 − xi

2 )2 + (xi −1)
2 ]

i=1

D−1

∑  (-10, 10) 

A. Algorithmic Parameters and Competitor Algorithms Used 
ETLOBA also enjoys the advantage of having less number 

of parameters similar to TLBO. The only parameter to be 
decided is the number of learners and in this case for both 
TLBO and ETLOBA we had chosen it as 10 (Pn=10). The 
proposed ETLOBA along with TLBO is also compared with 
other state-of-art methods, which include Harmonic Search 
(HS), Improved Bees Algorithm (IBA), and Artificial Bee 
Colony (ABC).  

B. Discussion on Results 
At first we made a comparison of results obtained with that 

of ETLOBA to TLBO in terms of, best fitness solution 
obtained in 100 runs, Mean value, and standard deviation 
(STD). These values are recorded in Table II and the best 



values are marked in bold. For functions F1 and F5 ETLOBA 
performed exceptionally well in terms of all three metrics 
considered. As the results obtained for functions F2-F4 using 
both the algorithms met theoretical optima, we had analyzed 
the performance based on convergence characteristics (for 
highest dimension 100), which are depicted in Fig 3-7. From 
the Table I and figures (Figures 3-7) it is evident that 
ETLOBA had outperformed TLBOA in terms of quality of 
solution and also in convergence rate.  To further validate the 
performance of ETLOBA method over other few successful 
meta-heuristics proposed in previous years we had compared 
the results of ETLOBA with few of the potential methods like 
HS, IBA, ABC [6] and also with original TLBO [1]. From 
Table III it was very clear that ETLOBA had outperformed 
rest of methods for a total four functions out of 5 considered. 
Though ETLOBA had got better result for function F5 when 
compared with TLBO (ref Table II, III) but ABC performed 
exceptionally well than ELOBA.   
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Fig. 3. Convergence of ETLOBA and TLBO for F1 function (100-D) 
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Fig. 4. Convergence of ETLOBA and TLBO for F2 function (100-D) 
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Fig. 5. Convergence of ETLOBA and TLBO for F3 function (100-D) 
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Fig. 6. Convergence of ETLOBA and TLBO for F4 function (100-D) 

 



Table II. Comparison of ABC and L-ABC in terms of Error, Standard Deviation and Fitness on traditional benchmarks 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table III. Comparison of ETLOBA with HS, IBA, ABC over Benchmark Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Function Dimensions 
(D) 

Best Fitness Value Mean Standard Deviation 
TLBO ETLOBO TLBO ETLOBO TLBO ETLOBO 

 
f1 

10 2.25E-32 5.50E-169 5.47E-26 9.90E-106 1.93E-025 4.95E-105 
30 6.32E-35 3.60E-165 6.04E-27 2.35E-099 1.54E-026 1.18E-098 
50 4.53E-31 2.31E-177 2.86E-25 9.72E-102 9.51E-025 3.44E-101 

100 1.61E-32 1.76E-175 3.06E-25 7.07E-103 7.22E-025 2.60E-102 

 
f2 

10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
50 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 
f3 
 

10 3.55E-15 0.00E+00 3.07e-14 0.00E+00 6.84e-14 0.00E+00 
30 3.55E-15 0.00E+00 7.99e-14 0.00E+00 2.46e-13 0.00E+00 
50 3.55E-15 0.00E+00 4.71e-14 0.00E+00 9.10e-14 0.00E+00 

100 3.55E-15 0.00E+00 6.60e-14 0.00E+00 1.95e-13 0.00E+00 

 
f4 

10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
50 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 
f5 

10 3.84E+03 8.92E+00 4.31E+04 8.97E+01 3.80E+04 2.13E-02 
30 6.67E+04 2.89E+01 3.43E+05 2.90E+01 2.24E+05 2.18E-02 
50 1.86E+05 4.89E+01 6.24E+05 4.90E+01 2.83E+05 1.86E-02 

100 5.88E+05 9.89E+01 1.46E+06 9.89E+01 5.95E+05 3.23E-02 

 
Function 

 

Dim 
(D) 

HS IBA ABC ETLOBA 

Mean (Std) Mean (Std) Mean (Std) Mean (Std) 

 
f1 

10 6.45E-08 (3.07E-08) 4.95E-17 (2.30E-17) 7.36E-17 (4.43E-17) 1.95E-98 (4.37E-98) 

30 7.21E+00 (3.62E+00) 2.92E-16 (6.77E-17) 4.69E-16 (1.07E-16) 1.36E-100 (3.04E-100) 

50 5.46E+02 (9.27E+01) 5.39E-16 (1.07E-16) 1.19E-15 (4.68E-16) 9.53E-107 (2.13E-106) 

100 1.90E+04 (1.78E+03) 1.45E-15 (1.63E-16) 1.99E-06 (2.26E-06) 2.15E-96 (1.07E-095) 

 
f2 

10 1.05E-05 (5.23E-06) 2.20E+01 (7.46E+00) 5.77E-17 (2.98E-17) 0.00E+00 (0.00E+00) 

30 7.40E-01 (7.00E-01) 1.28E+02 (2.49E+01) 4.80E-05 (2.43E-04) 0.00E+00 (0.00E+00) 

50 3.76E+01 (4.87E+00) 2.72E+02 (3.27E+01) 4.72E-01 (4.92E-01) 0.00E+00 (0.00E+00) 

100 3.15E+02 (2.33E+01) 6.49E+02 (4.52E+01) 1.46E+01 (4.18E+00) 0.00E+00 (0.00E+00) 

 
f3 
 

10 2.76E-04 (7.58E-05) 6.71E-02 (3.61E-01) 3.51E-16 (6.13E-17) 0.00E+00 (0.00E+00) 

30 9.43E-01 (5.63E-01) 1.75E+00 (9.32E-01) 3.86E-15 (3.16E-15) 0.00E+00 (0.00E+00) 

50 5.28E+00 (4.03E-01) 8.43E+00 (7.70E+00) 4.38E-08 (4.65E-08) 0.00E+00 (0.00E+00) 

100 1.32E+01 (4.90E-01) 1.89E+01 (8.50E-01) 1.32E-02 (1.30E-02) 0.00E+00 (0.00E+00) 

 
f4 

10 0.00E+00 (3.02E-02) 1.04E+00 (1.13E+00) 6.96E-17 (4.06E-17) 0.00E+00 (0.00E+00) 

30 1.09E+00 (3.92E-02) 6.68E+00 (6.43E+00) 5.82E-06 (3.13E-05) 0.00E+00 (0.00E+00) 

50 5.81E+00 (9.16E-01) 1.34E+02 (2.41E+01) 5.72E-01 (9.22E-01) 0.00E+00 (0.00E+00) 

100 1.78E+02 (1.98E+01) 7.93E+02 (7.96E+01) 1.31E+01 (6.30E+00) 0.00E+00 (0.00E+00) 

 
f5 

10 6.52E+00 (8.16E+00) 1.10E+01 (2.55E+01) 4.62E-01 (5.44E-01) 8.99E+00 (8.4E-03) 

30 3.82E+02 (5.29E+02) 7.57E+01 (1.16E+02) 9.98E-01 (1.52E+00) 2.89E+01 (2.24E-02) 

50 2.47E+04 (1.02E+04) 6.30E+02 (1.20E+03) 4.33E+00(5.48E+00) 4.90E+01 (2.20E-02) 

100 1.5E+07 (2.16E+06) 6.42E+02 (8.20E+02) 1.12E+02 (6.92E+01) 9.90E+01 (3.23E-02) 
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Fig. 7. Convergence of ETLOBA and TLBO for F5 function (100-D) 

V. CONCLUSIONS 
Teaching-Learning Based Optimization with Opposition 

and elitism was formulated and its performance assessment 
was given for the 5-test functions on various dimensions 
ranging from 10-100. The presence of the two robust 
mechanisms had improved the convergence rate of traditional 
TLBO method and also had outperformed many different 
optimization based algorithms in terms of optimal values. 

Future research may focus on extending ETLBOA for 
solving constrained optimization problems and modifying it 
suitably for multi-objective optimization problems as well. 
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