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Abstract— In this paper, the universal approximation propri-
ety is proved for the Flexible Beta Basis Function Neural Tree
(FBBFNT) model. This model is a tree-encoding method for
designing Beta basis function neural network. The performance
of FBBFNT is evaluated for benchmark problems drawn from
time series approximation area and is compared with other
methods in the literature.

I. INTRODUCTION

THE initiative of using Beta function for designing Arti-
ficial Neural Network was introduced by Alimi in 1997

[1] and in this case the network is called Beta Basis Function
Neural Network (BBFNN). The BBFNN is a three layer
feed-forward neural network that generally adopts a linear
transfer function for the output layer and a Beta function as
a nonlinear transfer function for the hidden units.

The Beta function has several advantages over the Gaus-
sian function, such as its ability to generate more rich shapes
(asymmetry, linearity, etc.) [2] and its great flexibility. In
addition, Alimi et al. [3] and Aouiti et al. [4] demonstrated
that BBFNN can be considered as a universal approximator.
Therefore several success researches have been achieved in
the use of the BBFNN for classification (pattern recognition)
[5], [6], prediction [7], [8], etc.

Although conventional representation of BBFNN has a
number of advantages such as better approximation capa-
bilities and simple network topologies, adapting the matrix-
encoding method suffers from slow premature convergence
characteristics and makes the BBFNN’s structure difficult to
regulate. These reasons encourage us to use the tree-based
encoding method for representing a BBF neural network.
The new representation called Flexible Beta Basis Function
Neural Tree (FBBFNT) [9], [10], [11], [12], is more flexible
than the classical BBFNN seen that it can find automatically
the number of nodes as well as the number of hidden layers.
The FBBFNT is evolved by a hybrid algorithm with two
levels: structure evolution and parameter evolution using
evolutionary computation [13], [14], [15]. The performance
of the evolving FBBFNT is tested for approximating some
nonlinear systems.

In fact, the problem of function approximation can be
considered as an aspect of neural networks learning. In the
case that the neural network task is a task of modeling
a physical process, it is reasonable to assume that the
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measured outputs of the process obey deterministic laws
and to seek a mathematical expression of the function to
be approximated [16]. The universal approximation property
is so a necessary property of the model used for this purpose
but it is not sufficient. In practice, the functions are defined
by determining a finite set of couples (Input-Output) which
not determine these functions univocally, the goal of learning
is to find the most parsimonious solution. Therefore we are
motivated in the current paper to justify that FBBFNT is also
a universal approximator.

The remainder of this paper is planned as follows: Section
II describes the Beta function and its proprieties. Section
III introduces the Flexible Beta Basis Function Neural Tree
design procedure and mathematical model. The universal
approximation propriety of the FBBFNT network will be
proved in Section IV. The set of some simulation results for
time series approximation are provided in Section V. Finally,
some concluding remarks are presented in Section VI.

II. BETA FUNCTION

The Beta function is the name used by Legendre and
Whittaker and Watson (1990) for the Beta integral (also
called the Eulerian integral of the first kind).

The first time where the Beta function was used as transfer
function for neural networks was by Alimi [1].
This function was chosen as a transfer function for many rea-
sons [3], [17], [18], including, its large flexibility (Figure 1)
and its ability to generate rich shapes (asymmetry, linearity,
etc.) [2].

A. Beta Function: definitions and proprieties

In the one-dimensional case, and if x0 and x1 are in R such
that x0 < x1 then the Beta function is defined by β(x) =
β(x;x0, x1, p, q) with four possible cases.
• Case 1: p > 0, q > 0

β(x) = β(x;x0, x1, p, q)

=

{ [
x−x0

c−x0

]p[x1−x
x1−c

]q
if x ∈]x0, x1[

0 else

(1)

Where c = p x1+q x0

p+q is the center of Beta function.

• Case 2: p > 0, q = 0

β(x) =


[
x−x0

c−x0

]p
if x ∈]x0, x1[

0 if x < x0
1 if x > x1

(2)
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Fig. 1. Examples of Beta Basis Function.

• Case 3: p = 0, q > 0

β(x) =


[
x1−x
x1−c

]q
if x ∈]x0, x1[

1 if x < x0
0 if x > x1

(3)

• Case 4: p = 0, q = 0

β(x) = 1, ∀ x ∈ R (4)

Some proprieties taken from [18] in the one-dimensional case
are presented as follows:

β(x0) = β(x1) = 0 (5)

β(c) = 1 (6)

dβ(x)

dx
=
[px1 + qx0 − (p+ q)x

(x− x0)(x1 − x)

]
∗ β(x) (7)

dβ(c)

dx
=
dβ(x0)

dx
=
dβ(x1)

dx
= 0 (8)

p

q
=
c− x0
x1 − c

(9)

We notice that if p = 1, q = 0:

β(x) =


[
x−x0

c−x0

]
if x ∈]x0, x1[

0 if x < x0
1 if x > x1

(10)

So, Beta basis function may be considered as a piecewise
linear function of x, if (p = 1, q = 0) or (p = 0, q = 1).

Let σ = x1 − x0 is the width of the Beta function which
can be seen as a scale factor for the distance ‖ x− c ‖. So: x0 = c−

[
σp
p+q

]
x1 = c+

[
σq
p+q

] (11)

(1) and (11) ⇒

β(x) = β(x; c, σ, p, q)

=


[
1 + (p+q)(x−c)

σp

]p[
1− (p+q)(c−x)

σq

]q
if x ∈

]
c− σp

p+q , c+ σq
p+q

[
0 else

(12)

B. Beta Function against Gaussian Function

The Gaussian function is defined by:

Gauss(x;µ, σ) = exp
[
− (x− µ)2

2σ2

]
(13)

Gauss(µ) = 1 (14)

dGauss(x)

dx
=
[x− µ
σ2

]
∗Gauss(x) (15)

ε→ 0 if n→ 0. (16)

Alimi demonstrated in [18] that the Gaussian function
can be approximated by the Beta function. In fact, for any
given Gaussian function Gauss(x;µ, σ) and for any given
precision ε, there exists a Beta function β(x;x0, x1, p, q) that
approximates the Gaussian function with an error of less than
ε: ∣∣∣β(x;x0, x1, p, q)−Gauss(x;µ, σ)

∣∣∣ 6 ε ∀x ∈ R. (17)

He noted also that the reverse is not true, since the Beta
function can have forms richer than the Gaussian function
(asymmetry, linearity, etc.).

III. FLEXIBLE BETA BASIS FUNCTION NEURAL TREE
SYSTEM: FBBFNT

In the current study, we have adopted a tree-based encod-
ing method for representing the Beta basis function neural
network instead of the matrix-based encoding method as it
is more flexible and gives a more modifiable and adjustable
structure. We introduce in this section, the proposed model
for design the Beta basis function neural network through
some definitions, basic concepts and the corresponding math-
ematical model. The proposed model is named Flexible Beta
Basis Function Neural Tree (FBBFNT) [9], [10], [11], [12].

A. Definition of Flexible Beta Basis Function Neural Tree

The FBBFNT is formed of a node set S representing the
union of function node set F and terminal node set T .

S = F∪T = {/M}∪{βlni / n ∈ {2, ...,M}, i ∈ {1, ..., Nc},
l ∈ {2, ..., (Nl − 1)}} ∪ {x1, ..., xD} (18)

Where:
• /M is the root node and represents a linear transfer

function. M is the maximum degree of the tree;
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• βlni (n ∈ {2, ...,M}, i ∈ {1, ..., Nc}, l ∈ {2, ..., (Nl −
1)}) denote non-terminal hidden nodes and represent
flexible Beta basis neurons with n inputs. i is the index
of the node β with n inputs, Nc is the number of times
in which β appears with n inputs. l is the layer index
(this index is taken from top to bottom), and Nl =
depth is the number of layers (or the depth) of the tree;

• x1, x2, ..., xD are terminal nodes and define the input
elements; each element includes LE learning values
xki (i = 1, ..., D; k = 1, ..., LE); where D is the
dimension of the treated problem and LE is the number
of learning examples.

The output of a non-terminal node is calculated as a
flexible neuron model (see Fig. 2).

Fig. 2. A flexible neuron Beta operator.

In the creation process of flexible Beta basis function
neural tree, if a function node, i.e., βlni is selected, n real
values are randomly created to represent the connection
weights between the selected node and its offspring.
In addition, seen that the flexible transfer function used for
the hidden layer nodes is the Beta function, four adjustable
parameters (the center cn, the width σn and the form parame-
ters pn, qn) are randomly generated as flexible Beta operator
parameters. For each non-terminal node, its total excitation
is calculated by:

yn =

n∑
j=1

wj ∗ Inpj (19)

Where Inpj (j = 1, ..., n) are the inputs of the selected node
and wj (j = 1, ..., n) are the connection weights.
The Inp is formed by n points (Inpj / j ∈ {1, ..., n}); each
point includes LE learning values Inpkj (k = 1, ..., LE).
Each Inpj can be either the values of a terminal node such
that xm (m ∈ [1, D]), or the output of another Beta node.
The output of node βlni (where pn > 0, qn > 0) is then
calculated by:

outn = β(yn; cn, σn, pn, qn)

=


[
1 + (pn+qn)(yn−cn)

σnpn

]pn[
1− (pn+qn)(cn−yn)

σnqn

]qn
if yn ∈

]
cn − σnpn

pn+qn
, cn + σnqn

pn+qn

[
0 else

(20)

The output layer yields a vector by linear combination of
the node outputs of the last hidden layer to produce the final
output.

A typical example of flexible Beta basis function neural
tree model is shown in Fig. 3.

Fig. 3. A typical representation of FBBFNT: function node set
F = {β2

21, β
2
22, β

2
31, β

3
23, β

3
32, /5}, and terminal node set T =

{x1, x2, x3, x4}.

B. Basic concepts of FBBFNT

According to the definitions presented in the last part, the
generation of the Flexible Beta Basis Function Neural Tree
model is realized with a random and recursive way. More
precisely, the initial FBBFNT model is a variable architecture
neural network with uniformly distributed random number of
layers in [NLMin, NLMax] and uniformly distributed random
number of nodes for each layer in [NNMin, NNMax]; apart
the output layer which has only one node. NLMax (the
maximum layer number or the maximum depth of the tree)
and NNMax (the maximum node number or the maximum
degree of the tree) are chosen depending on the studied
problem; unlike NLMin and NNMin which are equal to 3
and to 2, respectively. The minimum size of the tree is equal
to 5 and its maximum size is calculated as following:

SizeMax =
NNMaxNLMax − 1

NNMax− 1
(21)

The function nodes which contain parameters (Beta
parameters and connection weights with the offspring
nodes) are also randomly generated in the search spaces.
Indeed, the connection weights vary between 0 and 1
(Rand[0, 1]), Beta center is in [min(x),max(x)], Beta
width is in [0, |max(x) − min(x)|], and Beta form
parameters (p, q) are in [0, 5]. The FBBFNT is encoded
using three computer records.

BetaPar=Record {Computer record of Beta parameters}
c: integer; {center of the Beta}
σ: integer; {width of the Beta}
p: integer; {first form parameter of the Beta}
q: integer; {second form parameter of the Beta}

End;

575



Node=Record {Computer record of one node}
parent: integer; {value of parent node}
type: integer; {type of the node}
value: integer; {value of the node}
NbChild: integer; {number of children nodes}
NLayer: integer; {layer number}
betaPar: BetaPar; {record of Beta parameters}
child: array[1..NbChild] integer; {child indexes}
weight: array[1..NbChild] float; {weights}

End;
Tree=Record {The computer record of FBBFN tree}

depth: integer; {number of layers}
size: integer; {number of nodes}
node: array[SizeMin..SizeMax] Node;

End;

The overall output of flexible Beta basis function neural
tree can be computed recursively again by depth-first method
from left to right. Calculating the FBBFNT output depends
on the type of nodes (function node or terminal node) and
its level (root node or hidden node). The function used to
calculate the FBBFNT output is given by algorithm 1.

Algorithm 1: Tree output computing algorithm.
[tree,out_tree]=Tree_Output(tree, CN, data)
/* Initial CN=1 */
input : tree: generated tree, CN: number of the current

node, data: input data
output: tree: updating tree, out_tree: output of FBBFNT
begin

if (tree.node[CN].type =1) then /* CN is
Function node */

S = 0;
for i := 1 to tree.node[CN].NbChild do

[tree, out_child[i]] := Tree_Output (tree,
tree.node[CN].child[i], data);
S := S + tree.node[CN].weight[i] *
out_child[i];

end
if (CN = 1) then /* Root Node */

out_tree := purelin(S); /* Linear
function */

else
out_tree :=
BetaFunct(tree.node[CN].betaPar,S);
/* Beta function */

end
else /* CN is a terminal node */

out_tree := data(tree.node[CN].value);
/* corresponded input vector */

end
end

C. Computational complexity of FBBFNT

The computational complexity of the FBBFNT model
can be described as follows. Let us assume that N is the
number of input data, so the computational complexity of
the FBBFNT model is as a function of this number. For
the FBBFNT’s generation algorithm and output computing
algorithm which are recursive algorithms, the complexity is
of the order of O(N logM (N)); with M is the maximum
degree of the tree. On the other hand, the structure opti-
mization algorithms are in the worst case, of the order of
O(N2 logM (N)) and the parameter optimization algorithms
are in the worst case, of the order of O(N2). Moreover, the
complexity of fitness function is of the order of O(N).

As conclusion, the computational complexity of the
FBBFNT program is almost cubic, i.e. O(N3 logM (N)).

D. Mathematical model of FBBFNT

We can then consider that Tree_Output is a mathematical
function noted by: g(x) where x is input data and it defined
as follow:
• Case 1: j = depth

gdepth(x) =

Nbchilddepth∑
i=1

wig
depth−1
i (x) (22)

• Case 2: 1 ≤ j < depth

gji (x) =


β(
∑Nbchildi
k=1 wkg

j−1
k (x))

if(typei = 1) or (1 < j < depth)
xm ∀m ∈ [1, D]

if(typei = 2) or (j = 1)
(23)

Where j is the layer-associated node number and i is
the child nodes’ index.

IV. UNIVERSAL APPROXIMATION OF FBBFNT

To prove theoretically the competence of the proposed
model in problem approximation, we will demonstrate, in
this section, that the Flexible Beta Basis Function Neural
Tree is a universal approximator. In fact, Hornik et al. have
proved in [19], that the multilayer feed-forward networks
are universal approximators. Since FBBFNT is a special
case of multilayer feed-forward networks, we can deduce
that FBBFNT possesses this property especially that Alimi
et al. [3] have also justified that BBFNN is a universal
approximator. We will justify, moreover, mathematically
this property in this section.

Definition 1: Let A be a set of elements and Ψ be a
set of scalars.
A has two internal composition laws "+" (addition between
elements of A), "×" (multiplication between elements of
A), and an external law of composition "." (Multiplication
of an element of A by a scalar of Ψ), A is algebra if and
only if:

1) A endowed with the composition law "+" and the
external law of composition ".", is a linear space.
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2) If f , g and h are in A, α is in Ψ, then:
• f × g is an element of A.
• (f × g)× h is an element of A.
• f × (g+ h) = (f × g) + (f × h) is an element of
A.

• α.(f × g) = (α.f)× g.

Definition 2: a set B is sub-algebra of the algebra A if:
1) B is a linear subspace of A.
2) If f and g are in B, then f × g is an element of B.

Theorem 1 (Stone-Weierstrass theorem) [20]:
Let X be a metric space, X is a compact.
Let C[X] be a set of continuous functions defined on X and
let A sub-algebra of C[X] satisfying the following properties:

1) The function f(x) = 1 belongs to A.
2) For any pair (x, y) in X × X such that x 6= y, there

exists a function f ∈ A such that f(x) 6= f(y)

Then A is dense in C[X].

Theorem 2 (The FBBFNT density): Let X be a
compact in RD, and:

T1 = {f ∈ C[X] /f(x) =
m∑
i=1

wigi(x),m ∈ N} (24)

Where gi(x) represent the function defined in the equation
22.
Then T1 is dense in C[X].

Proof :
1) For example: if depth = 3 and NbChilddepth = 2,

then the root node has two child nodes which are Beta
function nodes. Also if p1 = p2 = 0 and q1 = q2 = 0,
then β1(x) = β2(x) = 1,∀x ∈ R; So according to
equations 4, 22 and 23:

f(x) = gdepth(x) =
2∑
i=1

wiβi(x) =
2∑
i=1

wi = 1

such that w1 = w2 = 0.5 (25)

then f(x) = 1 belongs to T1.

2) For any two distinct points s and r we can find a
function f in T1 such that f(s) 6= f(r), Indeed: if
depth = 3, NbChilddepth = 2, the root node has two
children nodes which are Beta function nodes with:

β1(x) = β2(x) =

{ (
x−x0

c−x0

)p(x1−x
x1−c

)q
ifx ∈]x0, x1[

0 else
(26)

p1 = p2 and q1 = q2 are chosen such that c = s, then
β(s) = 1 and β(r) < 1
So f(x) =

∑2
i=1 wiβi(x), then f ∈ T1, f(s) = 1 and

f(r) 6= 1⇒ f(s) 6= f(r).

3) We must show that T1 is sub-algebra of C[X] for any
compact X in RD.
T1 is sub-algebra of C[X] if the product of two of
these elements gives us another element of T1 and if
it is a subspace of C[X].

• Since T1 is a linear superposition of the function
g as defined in the equation 23, it is sufficient to
show that the product of two g functions is an
element of T1. Indeed:

gji (x) = β
(Nbchildi∑

k=1

wkg
j−1
k (x)

)
= β ◦ hji (x) = β(yi)

(27)

with:
hji (x) = yi =

∑Nbchildi
k=1 wkg

j−1
k (x);

- Case 1: g1 is non-terminal node and g2 is
terminal node

gdepth−11 (x) = β ◦ hdepth−11 (x) = β(y1)

=
(y1 − x0
c1 − x0

)p1(x1 − y1
x1 − c1

)q1 (28)

gdepth−12 (x) = xm / m ∈ [1, D] (29)

So:
h(x) = gdepth−11 (x) ∗ gdepth−12 (x)

= xmβ(y)⇒ h(x) ∈ T1

- Case 2: g1 is non-terminal node and g2 is also
non-terminal node

gdepth−11 (x) = β ◦ hdepth−11 (x) = β(y1)

=
(y1 − x0
c1 − x0

)p1(x1 − y1
x1 − c1

)q1 (30)

gdepth−12 (x) = β(y2) =
(y2 − x0
c2 − x0

)p2(x1 − y2
x1 − c2

)q2
(31)

So, we have,

h(x) = gdepth−11 (x) ∗ gdepth−12 (x)
= β(y1)β(y2)

=
(
y1−x0

c1−x0

)p1(x1−y1
x1−c1

)q1(y2−x0

c2−x0

)p2(x1−y2
x1−c2

)q2
With:
y1 =

(
x−x0

c3−x0

)p3(x1−x
x−c3

)q3 , and

y2 =
(
x−x0

c4−x0

)p4(x1−x
x−c4

)q4
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So for example:(
y1−x0

c1−x0

)p1
= E

=

(((
x−x0

c3−x0

)p3( x1−x
x1−c3

)q3)−x0)p1∗(
1

c1−x0

)p1
By polynomial development:
E =

∑p1
k=0

[(∏k
i=1

p1−(k−i)
i

)
xk0(

x−x0

c3−x0

)p3(p1−k)(x1−x
x−c3

)q3(p1−k)]
E =

∑p1
k=0

[(∏k
i=1

p1−(k−i)
i

)
xk0

βk(x;x0, x1, p3(p1−k), q3(p1−k))
]

And by the same principle we can calculate all
terms of h(x) and assume that h(x) is a Beta
function with specific parameters.

• Let: f(x) =
∑m1

i=1 wig
1
i (x) and

k(x) =
∑m2

i=1 wig
2
i (x) two elements of

T1; where m1 ∈ N, m2 ∈ N and λ is a scalar.

Let: Ω1 = {g11 , ..., g1m1
}, Ω2 = {g21 , ..., g2m2

}
and Ω = {g1, ..., gm} with: Ω = Ω1

⋃
Ω2

Then, we can write f and k as follow:

f(x) =
∑m
i=1 αigi(x) and k(x) =

∑m
i=1 γigi(x)

So:
f(x) + λk(x) =

∑m
i=1 αigi(x) + λ

∑m
i=1 γigi(x)

=
∑m
i=1(αi + λγi)gi(x)

Thus: f + λk ∈ T1

We therefore conclude that T1 is dense in C[X].

Theorem 3 (Approximation propriety of FBBFNT):
Let X be a compact in RD, and:

T1 = {f ∈ C[X] /f(x) =
m∑
i=1

wigi(x),m ∈ RD} (32)

Where gi(x) represent the function defined in the equation
22.
Then: ∀f ∈ C[X], ∀ε > 0, ∃g ∈ T1 such that ‖ f−g ‖∞≤ ε.

Proof: (Evident by applying Theorem 2)

V. SIMULATION RESULTS

FBBFNT needs a evolution process in order to optimize its
structure and to adjust its parameters (Beta parameters and
connection weights). So, to find an optimal or near-optimal

FBBFNT model, structure and parameter optimization are
used simultaneously in a hybrid algorithm. As our previous
work in [12], the FBBFNT’s structure is generated and
evolved by the Extended Immune Programming (EIP) algo-
rithm and the FBBFNT’s parameters are optimized using Hy-
brid Bacterial Foraging Optimization Algorithm (HBFOA).

The evolving FBBFNT model is applied to approximate
the input/output map of nonlinear systems. Indeed, in order
to prove the effectiveness of FBBFNT model, we compare
its results with those provided by other learning methods in
the literature.

A. Example 1: Approximation of Mackey–Glass time series

A time-series approximation problem can be constructed
based on the Mackey-Glass [21] differential equation:

dx(t)

dt
=

a x(t− τ)

1 + xc (t− τ)
− b x(t) (33)

The settings of the experiment vary from one work to another.
In our case, we take a = 0.2, b = 0.1, c = 10, and τ =
17. These values are the same ones used by the comparison
systems [22], [23], [24], [25], [26], [27], [28], [29]. As in
the studies mentioned above, the task is to predict the value
of the time series at point x(t + 6), with using the inputs
variables x(t), x(t−6), x(t−12) and x(t−18). 1000 sample
points are used in our study. The first 500 data pairs of the
series are used as training data, while the remaining 500 are
used to validate the model identified.

The used node set for creating an optimal FBBFNT model
is S = F ∪ T = {β3

21, β
3
22, β

2
31, /3} ∪ {x1, x2, x3, x4},

where xi (i = 1, 2, 3, 4) denotes x(t), x(t − 6), x(t − 12)
and x(t − 18), respectively. After 16 generations (G = 16)
and 6,004,148 global number of function evaluations of the
hybrid learning algorithm, an optimal FBBFNT model was
obtained with RMSE 5.3430e − 10. The RMSE value for
validation data set is 1.8630e − 09. These important results
are explained in the adaptation of the tree representation
which is a universal approximator, on the one hand and in
the application of EIP and HBFOA algorithms for the model
evolution, on the other hand.

The proposed system is essentially compared with Hierar-
chical multi-dimensional differential evolution for the design
of Beta basis function neural network (HMDDE-BBFNN)
[22], the FNT model with Gaussian function as flexible
neuron operator [26], the local least-squares support vector
machines-based neuro-fuzzy model (LNF) [29] and also with
other systems.
The HMDDE-BBFNN approach adopts for parameters: 50
for the population size, 10,000 for a total number of itera-
tions, and 4 for the number of the hidden nodes. Moreover,
the parameter settings of the FNT system [26] are 30 to the
population size, 135 as generation number, and 4 as hidden
function unit number (with two hidden layers). For LNF
network, the authors use 6 neurons to generate their model.

The comparison results are shown in Table I. As observed,
the FBBFNT_EIP&HBFOA achieves the lowest training and
testing errors.

578



TABLE I
COMPARISON FBBFNT_EIP&HBFOA WITH OTHER METHODS FOR THE

MACKEY-GLASS TIME-SERIES.

Method RMSE Training RMSE Testing
HMDDE-BBFNN [22] 0.0094 0.0170
GA-BBFNN [23] - 0.013
Fuzzy&MRB [24] 0.000990 0.000884
CPSO [25] 0.0199 0.0322
FNT [26] 0.0069 0.0071
HCMSPSO [27] 0.0095 0.0208
FWNN-M [28] 0.00129 0.00114
LNF [29] 0.00070 0.00079
FBBFNT_EIP&HBFOA 5.3430e-10 1.8630e-09

B. Example 2: Approximation of Sunspot Number time series

This example presents the series of the sunspot an-
nual average numbers which show the yearly average
relative number of sunspot observed. The sunspot num-
ber time series is considered as a real-world highly-
complex and non-stationary time series [30]. It is
recorded for the years 1700-1979. The dataset is avail-
able at the National Geophysical Data Center website
(http://www.ngdc.noaa.gov/stp/solar/ssndata.html).

The data points between 1700 and 1920 are used for
training FBBFNT model. For the test two sets are used the
first one is from 1921 to 1955 and the second is from 1956
to 1979. The y(t − 4), y(t − 3), y(t − 2) and y(t − 1) are
used as inputs to the FBBFNT model in order to predict the
output y(t). The used node set for the FBBFNT model is
S = F ∪ T = {β3

21, β
3
22, β

2
31, /3} ∪ {x1, x2, x3, x4}, where

xi (i = 1, 2, 3, 4) denotes y(t − 4), y(t − 3), y(t − 2) and
y(t− 1), respectively. After 26 generations of the evolution
(G = 26), an optimal FBBFNT model was obtained with
RMSE 1.9566e − 10. The RMSE value for the first data
set validation is 4.1519e − 10 and for the second data set
validation is 7.2714e− 10.

Table II illustrates the comparison of the proposed algo-
rithm with other models according to the training and testing
errors. As evident from Table II, FBBFNT_EIP&HBFOA
shows again the efficiencies for the sunspot number time
series.

TABLE II
COMPARISON FBBFNT_EIP&HBFOA WITH OTHER METHODS FOR THE

SUNSPOT NUMBER TIME-SERIES.

Method RMSE RMSE RMSE
Training Testing 1 Testing 2

Transversal Net [31] 0.2653 0.3149 1.1349
Recurrent Net [31] 0.2679 0.3151 0.9005
RFNN [32] - 0.2749 0.6249
FWNN-S [33] 0.2527 0.3341 0.5299
FWNN-R [33] 0.2383 0.3350 0.6885
FWNN-M [33] 0.2430 0.3152 0.6080
ABC_BBFNN [34] 0.0012 0.0018 0.0044
LNF [29] 0.1888 0.2537 0.3808
FBBFNT_EIP&HFBOA 1.9566e-10 4.1519e-10 7.2714e-10

C. Example 3: Approximation of Box and Jenkins’ gas
furnace time series

The gas furnace data of Box and Jenkins [35] was saved
from a combustion process of a methane-air mixture. It is
used as a benchmark example for testing approximation
methods. The data set forms of 296 pairs of input-output
measurements. The input u(t) is the gas flow into the furnace
and the output y(t) is the CO2 concentration in outlet gas.
The inputs for constructing FBBFNT model are y(t − 1),
u(t − 4), and the output is y(t). In this study, 200 data
samples are used for training and the remaining data samples
are used for testing the performance of the proposed model.
The used instruction set is S = F ∪ T = {β2

21, β
3
22, /3} ∪

{x1, x2}, where xi (i = 1, 2) denotes y(t − 1), u(t − 4),
respectively. After 22 generations (G = 22) of the learning
algorithm, the optimal FBBFNT model was obtained with
the RMSE 0.008026. The RMSE value for validation data
set is 0.009121. A comparison result of different methods
for Jenkins-Box data approximation is shown in Table III.

TABLE III
COMPARISON FBBFNT_EIP&HBFOA WITH OTHER METHODS FOR THE

JENKINS-BOX TIME-SERIES (y(t− 1), u(t− 4)).

Method RMSE Training RMSE Testing
ANFIS model [36] - 0.08544
FuNN model [37] - 0.26720
FNT [26] 0.01705 0.01746
FWNN-M [28] 0.01963 0.02324
HMDDE-BBFNN [22] 0.3745 0.2411
HyFIS model [38] - 0.25245
FBBFNT_EIP&HBFOA 0.008026 0.009121

VI. CONCLUSIONS

In this paper, the universal approximation is demonstrated
for the Flexible Beta Basis Neural Tree (FBBFNT). The
FBBFNT is a particular case of multilayer artificial neural
network using tree-based encoding method. This propriety
needs firstly to prove the FBBFNT density’ theorem based
on the density theorem of Stone [20].

The experiment results show that the FBBFNT network
can effectively approximate the time-series problems such as
the Mackey-Glass chaotic time series, the Sunspot Number
time series, and the Jenkins-Box time series.
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