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Summary. Particle Swarm Optimization (PSO) algorithm has exhibited good per-
formance across a wide range of application problems. But research on the Quadratic
Assignment Problem (QAP) has not much been investigated. In this paper, we intro-
duce a novel approach based on PSO for QAPs. The representations of the position
and velocity of the particles in the conventional PSO is extended from the real vectors
to fuzzy matrices. A new mapping is proposed between the particles in the swarm and
the problem space in an efficient way. We evaluate the performance of the proposed
approach with Ant Colony Optimization (ACO) algorithm. Empirical results illustrate
that the approach can be applied for solving quadratic assignment problems and it has
outperforms ACO in the completion time.

1 Introduction

Particle Swarm Optimization (PSO) algorithm is inspired by social behavior
patterns of organisms that live and interact within large groups. In particular,
PSO incorporates swarming behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from which the Swarm
Intelligence(SI) paradigm has emerged [1, 2]. It could be implemented and ap-
plied easily to solve various function optimization problems, or the problems
that can be transformed to function optimization problems. As an algorithm,
the main strength of PSO is its fast convergence, which compares favorably with
many global optimization algorithms [3, 4, 5]. PSO has exhibited good perfor-
mance across a wide range of applications [6, 7, 8]. However, research on discrete
problems, especially Quadratic Assignment Problem (QAP), has been done lit-
tle [9, 10]. In this paper, we design a fuzzy scheme based on discrete particle
swarm optimization [11, 12] to solve quadratic assignment problems.
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2 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a standard problem in location
theory. It was introduced by Koopmans and Beckmann in 1957 [13] and is a
model for many practical problems [14]. Intuitively, the QAP can be described
as the problem of assigning a set of facilities to a set of locations with given
distances between the locations and given flows between the facilities. The goal
then is to place the facilities on locations in such a way that the sum of the
product between flows and distances is minimal. More formally, given n facilities
{F1, F2, · · · , Fn} and n locations {L1, L2, · · · , Ln}, two n × n matrices FM =
[fij ] and DM = [drs], where fij is the flow between facilities Fi and Fj and drs

is the distance between locations Lr and Ls, the QAP can be stated as follows:

min
Π∈P (n)

ZΠ =
n∑

i=1

n∑
j=1

fijdΠiΠj (1)

where P (n) is the set of all permutations (corresponding to the assignment solu-
tions) of the set of integers {1, 2, · · · , n}, and Πi gives the location of facility Fi

in the current solution Π ∈ P (n). Here fijdΠiΠj describes the cost contribution
of simultaneously assigning facility Fi to location Πi and facility Fj to location
Πj . It is to be noted that the number of facilities (n) is assumed to be the same
as the number of locations. In the other word, one facility could be assigned to
only one location, and one location could be assigned to only one facility in a
feasible assignment solution.

The term quadratic stems from the formulation of the QAP as an integer
optimization problem with a quadratic objective function [14]. Let bij be a bi-
nary variable which takes value 1 if facility Fi is assigned to location Lj and 0
otherwise. Then the problem can be re-formulated as:

min
n∑

i=1

n∑
j=1

n∑
r=1

n∑
s=1

fijdrsbirbjs (2)

s.t.

bij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (3)

n∑
i=1

bij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (4)

n∑
j=1

bij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (5)

The QAP is a NP-hard optimization problem [15]. While some NP-hard com-
binatorial optimization problems can be solved exactly for relatively large in-
stances, as exemplified by the traveling salesman problem (TSP), QAP instances
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of size larger than 20 are considered intractable. The QAP is considered as one
of the hardest optimization problems, because exact algorithms show a very
poor performance on it [16]. Therefore, several heuristics have been proposed for
finding near-optimum solutions for large QAP instances, including ant colonies
optimization [17, 18, 19].

3 Particle Swarm Model

The classical PSO model consists of a swarm of particles, which are initialized
with a population of random candidate solutions. They move iteratively through
the d-dimension problem space to search the new solutions, where the fitness,
f , can be calculated as the certain qualities measure. Each particle has a posi-
tion represented by a position-vector xi (i is the index of the particle), and a
velocity represented by a velocity-vector vi. Each particle remembers its own
best position so far in a vector x#

i , and its j-th dimensional value is x#
ij . The

best position-vector among the swarm so far is then stored in a vector x∗, and
its j-th dimensional value is x∗

j . During the iteration time t, the update of the
velocity from the previous velocity to the new velocity is determined by Eq.(6).
The new position is then determined by the sum of the previous position and
the new velocity by Eq.(7).

vij(t) = wvij(t−1)+c1r1(x
#
ij(t−1)−xij(t−1))+c2r2(x∗

j (t−1)−xij(t−1)) (6)

xij(t) = xij(t − 1) + vij(t) (7)

Where r1 and r2 are the random numbers in the interval [0,1]. c1 is a positive
constant, called as coefficient of the self-recognition component, c2 is a positive
constant, called as coefficient of the social component. The variable w is called
as the inertia factor, which value is typically setup to vary linearly from 1 to
near 0 during the iterated processing. From Eq.(6), a particle decides where to
move next, considering its own experience, which is the memory of its best past
position, and the experience of its most successful particle in the swarm.

In the PSO model, the particle searches the solutions in the problem space
within a range [−s, s] (If the range is not symmetrical, it can be translated to the
corresponding symmetrical range.) In order to guide the particles effectively in
the search space, the maximum moving distance during one iteration is clamped
in between the maximum velocity [−vmax, vmax] given in Eq.(8), and similarly
for its moving range given in Eq.(9):

vi,j = sign(vi,j)min(|vi,j | , vmax) (8)

xi,j = sign(xi,j)min(|xi,j | , xmax) (9)

The value of vmax is ρ×s, with 0.1 ≤ ρ ≤ 1.0 and is usually chosen to be s, i.e.
ρ = 1. The pseudo-code for particle swarm optimization algorithm is illustrated
in Algorithm 1.
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Algorithm 1. Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to d
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(6),(8),(7),(9);
12. Next j
13. Next i
14. End While.

4 A Fuzzy Particle Swarm Approach for QAP

For applying particle swarm algorithm successfully for an objective problem,
one of the key issues is how to map the problem solution to the particle space,
which directly affects its feasibility and performance. In a “crip” particle swarm
model for the assignment problem, it would trend to assign many facilities to
the same location or assign many locations to the same facility. This kind of
the assignment would be unfeasible. In this section, a fuzzy matrix is introduced
to represent the quadratic assignment problem. And then, a new approach to
the problem space mapping is depicted for particle swarm optimization for the
quadratic assignment problem.

Suppose F = {F1, F2, · · · , Fn}, L = {L1, L2, · · · , Ln}, then the fuzzy assign-
ment relation from F to L can be expressed as follows:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

Here aij represents the degree of membership of the j-th element Fj in domain F
and the i-th element Li in domain L to relation A. In the fuzzy relation matrix
A between F and L, the elements subject to the following constraints:

aij = µR(Fj , Li), i = 1, 2, · · · , n, j = 1, 2, · · · , n. (10)

µR is the membership function, the value of aij means the degree of membership
that the facility Fj would be assigned to the location Li in the feasible assignment
solution. In the quadratic assignment problem, the elements of the solution must
satisfy the following conditions:
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aij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (11)

n∑
i=1

aij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (12)

n∑
j=1

aij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (13)

For applying PSO successfully, one of the key issues is how to map the prob-
lem solution to the particle space, which directly affects its feasibility and perfor-
mance [11]. According to fuzzy matrix representation of the quadratic assignment
problem, the position X and velocity V in the particle swarm are re-defined as
follows:

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

⎤
⎥⎥⎥⎦ ; V =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn

⎤
⎥⎥⎥⎦

The elements in the matrix X above have the same meaning as Eq.(10). Ac-
cordingly, the elements of the matrix X must satisfy the following conditions:

xij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (14)

n∑
i=1

xij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (15)

n∑
j=1

xij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (16)

Because the position and velocity in the new fuzzy particle swarm model have
been transformed to the form of matrices, they are updated by the new Eqs.(17)
and (18) with the matrix operations.

V (t) = w ⊗ V (t − 1) ⊕ (c1r1) ⊗ (X#(t − 1) � X(t − 1))
⊕ (c2r2) ⊗ (X∗(t − 1) � X(t − 1))

(17)

X(t + 1) = X(t − 1) ⊕ V (t) (18)

The position matrix may violate the constraints (14), (15) and (16) after
some iterations, it is necessary to normalize the position matrix. First we make
all the negative elements in the matrix to become zero. If all elements in a
column of the matrix are zero, they need be re-evaluated using a series of random
numbers within the interval [0,1]. And then the matrix undergoes the following
transformation:
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Xnormal =

⎡
⎢⎢⎢⎣

x11/
∑n

i=1 xi1 x12/
∑n

i=1 xi2 · · · x1n/
∑n

i=1 xin

x21/
∑n

i=1 xi1 x22/
∑n

i=1 xi2 · · · x2n/
∑n

i=1 xin

...
...

. . .
...

xn1/
∑n

i=1 xi1 xn2/
∑n

i=1 xi2 · · · xnn/
∑n

i=1 xin

⎤
⎥⎥⎥⎦

Since the position matrix indicates the potential assigned solution, the fuzzy
matrix can be “decoded” to the feasible solution. We choose the element which
has the max value in the column, then tag it as “1”, and other numbers in the
column and row are set as “0” in the assigning matrix. After all the columns
and rows have been processed, we get the assignment solution without violating
the constraints (14), (15) and (16), and then calculate the assignment cost of
the solution.

5 Experiment Settings, Results and Discussions

In our experiments, Ant Colony Optimization (ACO) was used to compare the
performance with PSO. The two algorithms share many similarities. ACO deals
with artificial systems that is inspired from the foraging behavior of real ants,
which are used to solve discrete optimization problems [21]. The main idea is
the indirect communication between the ants by means of chemical pheromone
trials, which enables them to find short paths between their nest and food. It is
implemented as a team of intelligent agents which simulate the ants behavior,
walking around the graph representing the problem to solve using mechanisms
of cooperation and adaptation. PSO is a stochastic search technique inspired by
social behavior of bird flocking or fish schooling. Both methods are valid and
efficient methods in numeric programming and have been employed in various
fields due to their strong convergence properties. Specific parameter settings
for the algorithms are described in Table 1. We consider the instances from
Taillard’s datasets1 and QAPlib2. Each experiment (for each algorithm) was
repeated 10 times with different random seeds. Each trial had a fixed num-
ber of 50 ∗ n ∗ n iterations (n is the dimension of the problem). If the value
50 ∗ n ∗ n is larger than 2 ∗ 104, the maximum iteration was set to 2 ∗ 104.
The average costs (AvgCost) and the standard deviations (std) were calculated
from the 10 different trials. The standard deviation indicates the differences
in the results during the 10 different trials. Usually the main emphasis will
be to generate the assignment solutions at a minimal amount of time. So the
completion time for 10 trials were used as one of the criteria to improve their
performance.

In order to closely track the performance of our algorithms, first we tested
two small scale problems, nug5 and nug8. The nug5 is a simple QAP instance
with 5 facilities on 5 locations. Its united matrix DF of the distance and
flow is
1 http://ina2.eivd.ch/collaborateurs/etd/
2 http://www.opt.math.tu-graz.ac.at/qaplib/
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Table 1. Parameter settings for the algorithms

Algorithm Parameter name Parameter value
Number of ants 5
Weight of pheromone trail α 1

ACO Weight of heuristic information β 5
Pheromone evaporation parameter ρ 0.8
Constant for pheromone updating Q 10
Swarm size 5
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5
1 0 5 2 4 1
2 1 0 3 0 2
3 1 2 0 0 0
4 2 1 1 0 5
5 3 2 2 1 0

⎞
⎟⎟⎟⎟⎠

Upper half of the DF matrix is the distance information, and the lower half is
the flow information. The two algorithms both search the best value 50 in its 10
runs. The results for 10 ACO runs were all 50, while the results of 10 PSO runs
were 50 nine times and 52 once. The optimal result is supposed to be 50 with the
best permutation, (4,5,1,2,3). Figure 1 illustrates the performance curves during
the search processes. ACO usually searches a better result using a less iteration
number than PSO for the smaller scale problem.
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Fig. 1. Performance for nug5
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The nug8 is other QAP instance with 8 facilities on 8 locations. The scale is
a little larger than nug5. The united matrix DF of the distance and flow is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8
1 0 5 2 4 1 0 0 6
2 1 0 3 0 2 2 2 0
3 2 1 0 0 0 0 0 5
4 3 2 1 0 5 2 2 10
5 1 2 3 4 0 10 0 0
6 2 1 2 3 1 0 5 1
7 3 2 1 2 2 1 0 10
8 4 3 2 1 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2 illustrates the performance of the two algorithms for nug8. The results
for 10 ACO runs were {218,224,224,214,224,224,228,224,224,224}, with an aver-
age value of 222.8. The results of 10 PSO runs were {214,222,218,214,220,218,
218,218,222,224}, with an average value of 218.8. The optimal result is supposed
to be 214 with the best permutation, (2,1,4,5,3,8,7,6). While ACO provided the
best result once, PSO provided the best result twice.
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Fig. 2. Performance for nug8

Further, we tested the algorithms for other instances. The average cost (Avg-
Cost), the standard deviations (std) and the time for 10 trials were recoded.
Empirical results are summarized in Table 2. As the results depict, the ACO is
an effective algorithm for the little scale problems, while PSO usually had better
averages for a little bigger problem sizes. PSO also had larger standard devia-
tions. The robustness of our algorithm is one of the future works in this study.
It is to be noted that PSO usually spent the less time to assign the facilities on
the locations.
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Table 2. Comparing the results of ACO and PSO for quadratic assignment problems

ACO PSO
Problem AvgCost std time AvgCost std time
nug5 50.0 0 258.4700 50.2 0.6325 103.8130
nug8a 222.8 3.9101 631.1193 218.8 3.2931 322.8750
tai8a 85934 800.4784 872.5578 83294 2698.1 572.0150
chr12a 16557 1661.6 1048.0 13715 2098.0 736.0545
tai12a 256180 3066.5 968.1560 254230 5809.9 653.1410
chr20a 5438.8 261.3909 1142.7 4456.0 389.8974 754.5
dre30 1849.6 82.1998 1514.4 1592.0 118.4736 1040.5
tho40 302840 3603.3 1612.3 286670 5318.3 1233.3
tai50a 5626356 15225 2045.3 5587622 52893 1602.4

6 Conclusions

In this paper, we introduced an approach based on Particle Swarm Optimiza-
tion (PSO) for quadratic assignment problems. The representations of the po-
sition and velocity of the particles in PSO is extended from the real vectors
to fuzzy matrices, through which we accomplished the mapping between the
quadratic assignment problem and the particle. We evaluated the performance of
our proposed approach and compared it with Ant Colony Optimization (ACO).
Empirical results illustrated that the proposed approach was an effective ap-
proach to solve quadratic assignment problems and it outperformed ACO in the
completion time.
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